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Model calibration
The calibration of the model to the Melbourne and Perth urban water systems is described in this chapter. There are two separate models, one for each city, each of which is built to reflect the specific characteristics of water supply in that city and the policy issues that apply. 
In addition, two versions of the model are created for each city: a historic model and a present model. The two versions are used to examine:
· the economic costs of resource misallocation in the past

· the economic benefits of improved resource allocation in the future. 

For Melbourne and Perth, the ‘present’ version of the model is calibrated to represent the urban water systems at the start of 2011, taking as given existing supply capacity, including committed supply augmentations that are now irreversible. For Melbourne, the ‘historic’ version is calibrated to represent the system before the construction of the Wonthaggi desalination plant and the Sugarloaf pipeline. For Perth, the ‘historic’ version is calibrated to represent the system prior to the construction of the Southern Seawater desalination plant. 
The mathematical specification of the model is provided in appendix B.
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Model size and computational limits
The number of nodes in the inflow scenario tree increases with both the number of inflow states and the number of time periods in the model (table 3.1). 
The variables in the model are specified for each node in the scenario tree (for example, quantity demanded, storage in dams, production from desalination plants). Over a ten period time horizon, the model contains approximately 6.2 million variables and 1.3 million constraints, although this will vary for different models and simulations. This was determined to be the largest model solvable given existing linear programming software and computer hardware.
Two versions of a ten period model are solved: a short-run simulation with ten single year time periods, and a longer-run simulation with ten biennial time periods (each time period represents two years). Both versions of the model use a discount rate of 6 per cent. Aggregate time periods are used to examine investment decisions over a longer timeframe, while staying within the practical computational limits. This approach of aggregating time periods has been documented previously (for example, Kolstad 1989 and Uri 1989).
Table 3.

 SEQ Table \* ARABIC 1
Number of nodes and scenarios as the number of time periods increase, for three contingent states in each year

	Year
	Nodes in the scenario tree
	Scenarios in the scenario tree

	1
	3
	3

	2
	12
	9

	3
	39
	27

	4
	120
	81

	5
	363
	243

	6
	1 092
	729

	7
	3 279
	2 187

	8
	9 840
	6 561

	9
	29 523
	19 683

	10
	88 572
	59 049


The remaining sections of this chapter cover the calibration of the Melbourne and Perth models. Section 3.2 discusses inflows and scenarios, section 3.3 outlines the demand for potable water and section 3.4 provides detail on the water supply technologies modelled. 

3.2
Inflows and scenarios
Records of inflows into storages in Melbourne and Perth display variability over time (figures 
3.1 and 
3.2). To create the 59 049 inflow scenarios for a ten period model, a three point discrete distribution of inflows is estimated.

In order to represent the variability in inflows in the model, there are several characteristics of inflows that need to be considered. 

First, inflows vary from year to year and can be extremely high or low. For example, in 2010, Perth received 12 GL of water into storages which is very low relative to the average for the last 30 years. 

Second, average inflows might be declining over time. Inflows into the Perth system undertook a downward step in the 1970s (figure 
3.2) and have been very low in recent years. There also appears to be a downward trend over time for inflows into the Melbourne system (figure 
3.1). 
Figure 3.

 SEQ Figure \* ARABIC 1
Annual inflows for Melbourne, 1913 to 2010
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Source: Melbourne Water (2011b).

Figure 3.

 SEQ Figure \* ARABIC 2
Annual inflows for Perth, 1911 to 2010
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Source: Water Corporation (2011c).
Third, there can be sequences of wet and sequences of dry years. Planning and operation of water systems needs to be cognisant that there can be several dry years and several wet years in a row. Examining the historical data for five-year cumulative inflows shows, however, that on average, extreme scenarios over long periods of time are rare. In the scenario approach used in this modelling, the distribution of cumulative inflows are particularly important. 

Finally, inflows might be correlated over time (McMahon et al. 2007). 

Consideration of all of these characteristics has influenced the estimation of the stochastic three point discrete distributions that are used for the Melbourne and Perth models. 

Calibrating the discrete probability distribution used to generate scenarios
There is 100 years of inflow data for Melbourne and Perth (Melbourne data are for 1913 to 2008 and Perth data are for 1911 to 2010) (figures 
3.1 and 
3.2). Although 100 years of data is available, it is appropriate to use only a recent subset of the data, given that inflows appear to be declining over time (for example, inflows into the Perth system show a break in the series in the 1970s).

For Melbourne, the observations for the last 30 years were chosen as the relevant subset upon which to base the distribution used in the model. For this data, there is no statistically significant (at the five per cent level) evidence of correlation between inflow events or drying over time.
 

For Perth, the Water Corporation provided its own generated inflow data consisting of 1000 scenarios, each over 102 years. These data are used to calibrate the three point discrete distribution for Perth. No serial correlation was evident in the Water Corporation data. 
Fitting a three point discrete distribution
The three point inflow distribution should satisfactorily represent both the inflow data for one year and the cumulative or mean inflow scenarios over a number of years. In order to achieve this, a four step process is used to estimate the three point discrete inflow distributions from the appropriate data: 

1. estimate the first three moments from the inflow data

2. fit a gamma distribution to the data (only done for Melbourne)
3. generate a five year cumulative inflow distribution
4. generate the three point distribution to match the moments from the data and the tails of the five year distribution.

The first step to estimating the three point distributions that are used in the model is to estimate the first three moments in the selected data set: mean, variance and skewness.
The second step (required only for the Melbourne model) is to fit a gamma distribution to the data. This is done because there are not enough observations to construct a five year cumulative distribution (step three). The fitted continuous distribution is a close fit to the original data according to the first three moments. A gamma distribution is chosen because gamma distributions do not have negative values and the skewness of the function is appropriate for the inflow data — that is, it is skewed towards the left, so there is more likelihood of below average inflows than above average inflows. 
Step two is not required for the Perth data because the generated distribution of inflows used contains 102 000 observations.
The third step is to generate a five year cumulative distribution. It is important that the model captures the variability in inflows that accumulate over several years, as the water system comes under stress when there are consecutive extreme events. These successive inflows have more effect on investment decisions in the model because supply has to be sufficient to meet demand. 

For Melbourne, a five year cumulative distribution is estimated from the one year gamma distribution. This is done by randomly sampling inflow events from the gamma distribution using a Monte Carlo simulation. Each successive five events are averaged to form one observation in the cumulative five year distribution. For Perth, groups of five consecutive data points are selected from the data and averaged to form one observation in the cumulative distribution. 
The cumulative distribution has the same mean as the original gamma distribution. However, the variances are smaller. This is because the extreme high and low events in the annual average out over a five year period. 

The tails on the cumulative distributions represent extremely unlikely sequences of inflow events. The highest and lowest one per cent of observations are, on average, likely to occur once in every 100 years. These inflow events are considered to be unlikely enough to reflect a reasonably extreme scenario of inflows over a five year period. Therefore, they are chosen as the levels of the ‘high’ and ‘low’ inflow levels in the final three point distributions used in the modelling.

The final step in the process is to enter the moments and the ‘high’ and ‘low’ inflow values into an optimisation model (an approach similar to that used in Hoyland and Wallace 2001). The optimisation model chooses the ‘medium’ inflow level and the three corresponding probabilities for each of the inflow levels so that the resulting three point distribution has the mean, variance and skewness in the original data. 
Table 3.2 contains the levels and probabilities that correspond to the final three point distributions applied in the models. The three point distribution cannot account for annual inflows that are outside the range captured by the three discrete points on an annual basis. For example, the scenario tree does not account for the possibility of Perth receiving a year of very low inflows of less than the low point in the distribution (54.7 GL) for any given year. 

However, the scenario tree does capture extreme cumulative inflow events. At the extremes, the low inflow and high inflow 10 year scenarios generated from these distributions are more extreme than any historical sequence (with the probability of these scenarios occurring being less than one in 50 000) (figure 3.3). 
Further, sensitivity analysis was undertaken in order to account for the uncertainty with respect to inflow parameters and to take account of the possibility of higher or lower inflow levels. The impact of a 30 per cent change in the mean level of inflow was examined. 
Table 3.

 SEQ Table \* ARABIC 2
Three point discrete distribution of annual inflows

	
	Melbourne
	Perth

	
	GL
	Probability
	GL
	Probability

	Low inflow
	221.994
	0.250
	54.682
	0.240

	Medium inflow
	377.104
	0.555
	154.905
	0.557

	High inflow
	571.469
	0.196
	265.580
	0.203

	
	Melbourne statistics
	Perth statistics

	Mean
	
	376.391
	
	
	153.319
	

	Variance
	
	13 396.381
	
	
	4894.737
	

	Skewness
	
	0.344
	
	
	0.166
	


Source: Productivity Commission estimates.
Figure 3.

 SEQ Figure \* ARABIC 3
Box plot comparison of approximating inflows over 5 and 10 years for Melbourne
Historical data compared with discrete approximation
	  - Mean    — Median          Interquartile range     Total range 
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Source: Productivity Commission estimates.
Inflows in the 20 year model
In the 20 year model, each time period represents two years. It is therefore necessary to calibrate a three point discrete inflow distribution to inflows over a two year period. The four step process outlined above is repeated, with the ‘high’ and ‘low’ inflow values taken from a ten year cumulative inflow distribution. Table 3.3 contains the levels and probabilities that correspond to the final three point distributions applied in the 20 year applications.
Table 3.

 SEQ Table \* ARABIC 3
Three point stochastic discrete distribution of two year cumulative inflowsa
	
	Melbourne
	Perth

	
	GL
	Probability
	GL
	Probability

	Low inflow
	255.149
	0.2277
	81.117
	0.210

	Medium inflow
	374.559
	0.5755
	155.280
	0.597

	High inflow
	526.134
	0.1968
	232.773
	0.193

	
	Melbourne statistics
	Perth statistics

	Mean
	
	377.199
	
	
	154.662
	

	Variance
	
	7761.223
	
	
	2303.646
	

	Skewness
	
	0.345
	
	
	0.076
	


a  The inflow levels represent the average inflows over a two year period. 
Source: Productivity Commission estimates.
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Demand
This section describes the consumer demand characteristics used for the Melbourne and Perth models. Table 3.4 provides a summary of the data used, and the sensitivity analysis undertaken. 
Table 3.

 SEQ Table \* ARABIC 4
Consumer demand characteristics for Melbourne and Perth models

	Parameter
	Units
	Melbourne central estimate
	Perth
central estimate
	Sensitivity

	Annual water usage
	
	
	
	

	Total consumption historic model
	GL
	390
	276
	± 10 per cent

	Price historic model
	$/kL
	1.30
	0.88
	..

	Total consumption present model
	GL
	426
	291
	± 10 per cent

	Price present model
	$/kL
	1.50
	1.237
	..

	Demand shares of aggregate consumption by class
	
	

	Outdoor 
	%
	11
	31.5
	..

	Indoor household
	%
	59
	38.5
	..

	Commercial
	%
	30
	30
	..

	Price elasticity of demand by class
	
	

	Outdoor 
	
	- 0.30
	- 0.30
	double/half

	Indoor household 
	
	- 0.10
	- 0.10
	double/half

	Commercial 
	
	- 0.30
	- 0.30
	double/half

	Annual growth rate of consumption
	
	

	
	%
	1.6
	2.1
	±0.5


.. Not applicable.

Quantity and price

For Melbourne, the unrestricted aggregate demand
 in the ‘present’ model is 426 GL per annum (Melbourne Water, pers. comm., 19 January 2011) at a (marginal) price of $1.50 per kilolitre (ESC 2010b) (table 3.4). For the historic model, the unrestricted aggregate demand is 390 GL.
For Perth, aggregated demand in the ‘present’ model is 291 GL per annum at a price of $1.237 per kilolitre.
 This level of demand assumes current permanent efficiency measures of two day a week sprinkler rosters and winter sprinkler bans. In the historic model, aggregated demand is 276 GL per annum (Water Corporation 2008b) at a price of $0.88 per kilolitre (based on ERA 2008b). 
Categories of demand

There are three types of demand specified in the model. In Melbourne, the three categories of demand are household indoor, commercial indoor, and total outdoor. More than half of aggregate demand is assumed to be for indoor use by residential customers, with the remainder split between outdoor use and indoor commercial use. The disaggregation of aggregate demand allows water restrictions to be imposed selectively on outdoor use.
In Perth, the demand categories are defined as household indoor, household outdoor, and commercial. Perth aggregate demand is disaggregated differently to Melbourne due to the availability of data. Seventy per cent of total demand is assumed to be for household use, of which 55 per cent is used indoors and 45 per cent is used outdoors (based on Water Corporation 2010). The remaining 30 per cent is used for commercial purposes (table 3.4). 

The impact of modelled policies on net social welfare is likely to be underestimated because the diverse preferences of consumers are underrepresented in the model, which only has three categories of demand. 
Price elasticity of demand
Consumers are likely to adjust their demand for water in response to changes in prices. However, accurate estimation of the magnitude of these responses is difficult. The relationship between demand and price (known as price elasticity of demand) has been chosen based on a large number of studies, for which the estimates of price elasticity vary widely (see for example Worthington and Hoffman 2008). Estimating price elasticities using historical data is also challenging, due partly to limited variation in prices over time and because of the impact of non-price demand management measures, which include restrictions, education campaigns and moral suasion. The timing of these measures is often correlated with price changes so that disentangling the impact of price and these other factors on demand is difficult. Estimating price elasticities is further complicated in some jurisdictions by the multi-tiered pricing structure of inclining block tariffs. Alternative methods include surveys to elicit water use plans under different prices, but these suffer from drawbacks too — in particular, stated preferences have often been found to contradict actual (revealed) preferences (Maler and Vincent 2005). 

Further complicating matters, demand is likely to be more price responsive over several years than in the short run. Over longer periods of time, consumers are able to modify their behaviour, install water saving technologies and change to less water-intensive gardens in response to water shortages and higher water prices. A study by Abrams et al. (2011) found it takes households on average one year to adjust from their immediate to long-term position. Incorporating a time-varying elasticity (both short-run and long-run) into modelling requires a dynamic representation of demand (for example, along the lines of the partial adjustment model in Phlips 1974). This cannot be easily incorporated into the Takayama and Judge (1971) framework as welfare needs to be separable across time periods and this separability is violated under dynamic representation of demand. 
In this model, an elasticity estimate is used for each of the three demands, which should be interpreted as a ‘medium term’ elasticity somewhere between the immediate response and the eventual, long-term response to prices. Since the model is annual or biannual, this assumption was thought reasonable. The elasticity of household indoor demand is assumed to be -0.1, and the outdoor and commercial elasticities are both assumed to be -0.3 (table 3.4).
To incorporate the wide range of views regarding price elasticities of demand, sensitivity analyses are undertaken for a range of elasticity estimates. The more elastic end of the range reflects the academic literature (as summarised in Worthington and Hoffman 2008) and the less elastic end is based on industry views (for example, as reported in PWC 2009 and Abrams et al. 2011). The central estimate for household elasticity of demand is slightly lower than that used by Grafton and Ward (2008a) and Hughes et al. (2008) for similar modelling work. Outdoor and commercial uses of water are assumed to be more elastic than indoor household use. 

Calibration of initial demand

The demand functions in the model are assumed to be linear and downward sloping. The demand functions are calibrated to the elasticity figures using an arc elasticity over a representative potential price range ($1 to $5 per kilolitre for Melbourne and $0.50 to $5 per kilolitre for Perth) (box 3.1). 
Negative elasticities of demand imply that the net social welfare objective function of the model — which includes the area under the linear demand curve — is non‑linear. Finding the solution to a non-linear programming model is computationally difficult, and not practical for a model of this size. It is possible to solve larger linear programming models. For this reason, the model contains linearised demand functions (with between 20 and 50 linear segments). For a description of the mechanics behind linearisation, see box 3.2. 
	Box 3.

 SEQ Box \* ARABIC 1
Calibrating demand using an arc elasticity

	The degree of impact that a change in price has on demand is measured by the price elasticity of demand — the percentage change in the quantity demanded resulting from a one per cent change in price. The arc elasticity is the average elasticity between two points on a demand curve. It is calculated based on the average of two values of price and quantity (rather than for a single point). The arc elasticity is defined in equation 1:
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With a linear demand function of the form 
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Example: Melbourne outdoor demand

In this calibration, assume 
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). The demand function is calibrated as follows:

· step 1: solve for the intercept using equation 2 (a = 13)

· step 2: solve for slope coefficient using equation 4 (b = –0.273).
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	Box 3.

 SEQ Box \* ARABIC 2
Linearising demand

	The objective function term with respect to quantity demanded is gross consumer welfare, defined as the integral (area) under the demand function. For a linear demand function, P = a – bQ, the gross consumer welfare is W = aQ – 0.5bQ2. Piecewise linearisation of the gross welfare function is used to convert the non-linear programming problem to a linear programming approximation, as set out in the stylised illustration below.
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The non-linear welfare function is approximated using three piecewise linear segments (defined by demand activity variables D1, D2 and D3), that represent demand quantities Q1, Q2, Q3 respectively and welfare levels W1, W2 and W3 respectively. The demand function is therefore a stepwise approximation of the original linear demand function. As the quantities associated with each linear segment represents the total level of water consumed (and not incremental additions), a ‘convexity’ constraint is added to ensure that the sum of the linear segments does not exceed unity.
As the welfare function is convex, at the optimal solution the quantity demanded will correspond to a corner point (one of the demand activities equals one) or a linear combination of two adjacent points. The Lagrangean variable (or shadow price) on the convex demand constraint is consumer surplus, and the Lagrangean variable on the demand–supply balance constraint is the unit (demand) price of water.

	Sources: Duloy and Norton (1975); Hazell and Norton (1986).

	

	


Growth in demand
Consumption is projected to grow over time with population growth but the price elasticity of demand is assumed to be constant.

Growth in consumption is based on ABS population growth projections for the respective cities (ABS 2008). Consumption is projected to grow at 1.6 per cent per annum for Melbourne and 2.1 per cent per annum for Perth. 
Growth in consumption is modelled by rotating the linear demand function upwards about the intercept (box 
3.3). The idea is that for any given price held constant over time:

· there is an increase in the quantity demanded (from growth)

· the price elasticity of demand is held constant as demand grows over time.

	Box 3.

 SEQ Box \* ARABIC 3
Growth and constant elasticity for a linear demand function

	The slope of the linear demand function is related over time, such that:
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	Source: Duloy and Norton 1975.

	

	


Impact of water restrictions on demand
Water restrictions apply to outdoor demand only in the model. The impact of water restrictions in curtailing outdoor demand is calibrated to level 3a restrictions in Melbourne and a total sprinkler ban in Perth (table 
3.5). For Perth, a total sprinkler ban is assumed to be invoked when dam storages fall below 25 per cent.
 When invoked, outdoor demand for water is restricted to 67 GL (table 
3.5).
 
Table 3.

 SEQ Table \* ARABIC 5
Impact of water restrictions

	Parameter
	Units
	Melbourne
	Perth

	Restricted outdoor demand
	GL
	33
	67

	Storage level trigger
	Per cent of storage capacity
	35
	25


3.
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Supply technologies
Each new supply option modelled requires data on three categories of cost: construction cost; annual fixed maintenance cost; and the marginal cost associated with releasing, delivering or obtaining a unit of water from the supply source. The capital costs are truncated, reflecting that the investments have lives that extend beyond the modelling period (box 
3.4). 
	Box 3.

 SEQ Box \* ARABIC 4
Truncation of investment costs

	Each possible new future supply source in the model has an investment cost and economic life that typically extends beyond the planning horizon of the model (10 years and 20 years). In such cases it is inappropriate to attribute all of the investment cost to the planning horizon being modelled. 

In net present value terms, the investment cost is the sum of the discounted annual payments to capital over the life of the asset. However, correction needs to be made for the proportion of the investment that operates outside of the time horizon modelled.
The investments made in the model often have operating lives of more than 30 years. Further, investment possibilities in later years of the modelled planning horizon will be used for fewer years, and thus have less time within the planning horizon to achieve a positive benefit–cost ratio. For this reason, capital costs of investments are truncated. 

Capital costs are truncated by firstly calculating the Equivalent Annual Value (EAV) of the investment over its life. The EAV is then summed over all years in which the investment will be operational in the model. The present value of the truncated EAV is then further discounted by the lag (lead-time) between the year the decision is taken to invest and the year in which the supply source becomes operational.

For example, in a 10 year model, an investment made in year two with a two year lag would come on-line in year four. This would leave six periods in which payments to capital could be made. The truncated capital cost would therefore be the sum over six years of the equivalent annual value of the asset, discounted for two time periods to derive the capital cost at the time the investment decision was taken. 

	

	


Further, each new supply option modelled has additional unique attributes, which preclude ranking the investment options on investment and operating costs alone. For example, the desirability of each investment is influenced by:

·  the economic life of the supply source

·  the lag time between the decision to invest and the supply of water

· whether the source of water is included or excluded from restrictions (for example, water provided by tanks is not restricted). 

An economic assessment of new supply options should include all relevant costs associated with supplying water from that source, including any environmental costs (where known). Data limitations have meant that, for this inquiry, environmental costs are only incorporated exogenously to the extent that they affect costs incurred in building or operating the facility. For example, where environmental assessment and remediation is required as part of building a dam, this is included in the cost of constructing the dam. Similarly, for desalination, additional energy costs required to run the facility using renewable power are included in its operating costs.

Environmental externalities associated with particular supply sources could also be included in the modelling approach used for this inquiry. Additional costs (in the case of a negative externality) and benefits (in the case of a positive externality) beyond the urban water sector could be added to the objective function. If included in this way, externalities would impact on the desirability, order and timing of supply source augmentations, as well as their operation. For example, there are negative environmental impacts associated with large amounts of nitrogen flowing into waterways. Rainwater tanks (and the corresponding water use in gardens) can help to reduce this nitrogen run-off and therefore have a positive environmental impact (appendix E of the inquiry report). This could be represented in the model as a benefit associated with the use of household tanks, which would make them more desirable as a supply source. 

Environmental constraints can also be imposed on the operation of facilities or sources. If such constraints are binding, there will be a shadow price on the environmental constraint, resulting in an economic rent to the restricted use of the resource. An example is the limits placed on extraction from existing aquifers included in the model for Perth (in any single year and accumulating over a number of years) (see section below for details). Environmental constraints on other sources of supply could also be included in the model, but the Commission has not been given evidence of any such constraints.

The list of options considered is not exhaustive. For example, sourcing water from Tasmania and the Kimberley have not been included as a possibilty for Melbourne and Perth respectively. Other alternatives that require water of different quality to be used for different purposes — such as dual reticulation systems — are also not modelled. Including these sources would require a much larger model. Additionally, economies of scale for new supply sources are not included in the model due to limited data on scale costs. 
Further, there is no ‘backstop technology’ included in the modelling. A backstop technology is a source of water supply that is available at short notice, albeit at a high price. This source of supply would set an upper bound on the market clearing price. For example, water was trucked in to supply some areas of rural Victoria during 2007, at a cost of about $10 per kilolitre (Goulburn Valley Water 2008). In large cities, supplying water through such a last resort measure is likely to be more difficult, given the quantities of water involved. However, it is not without international precedent. During 2008, water was transported to Barcelona by tanker ships, at a cost of about $5 per kilolitre (Time Magazine 2008). The availability of a backstop technology — at an acceptable price — allows water storages to be operated at a lower level than without such a backstop technology. However, a backstop supply source was not included in the simulations included in this paper due to the difficulty of supplying a large quantity of water at short notice, and uncertainty about the costs and practicalities of such a technology given the lack of experience in large cities of Australia. Further, it is unlikely that under efficient operation of the sector such a situation would arise, particularly when a framework of multi-stage stochastic (real options) approach to production is taken. 

Omitting a backstop technology does not impact general economic inferences that can be illustrated using this model since prices are unlikely to rise above the cost of backstop sources of supply. 

Dams

Dams provide an existing source of water in both Melbourne and Perth. Table 
3.6 provides a summary of the data used. New dams are not included in the model as a supply augmentation option. There are likely to be long delays between the decision to build a new dam and the supply of water, as time is needed for planning and environmental approval, construction, and filling of the dam. There is also a diminishing number of sites available for dams, with increasing costs of procurement. Due to a lack of reliable data, dams are not included as a possible source of supply in the modelling for this paper. With more consistent data, they could be included in future modelling work.
For Melbourne, mean inflows into dams are assumed to be 376 GL per year. This is net of environmental flows and system losses (for example evaporation). The bottom 10 per cent of water in existing dams is assumed to be in deep storage and not readily available for use without the construction of new infrastructure (which would increase the cost of supply). Initial dam storages in the present model are set at 50 per cent of capacity, based on observed levels in January 2011 in Melbourne (Melbourne Water 2011d). Initial dam storages in the historic model are set at 35 per cent. Existing dams are assumed to have an operating cost of 10 cents per kilolitre of water delivered and maintenance costs of $45 million per year.
 Only variable costs of supply are included in the model for existing supply sources. This is because past investments are considered to be sunk.

Increased environmental flows from dams could be, but are not, included in the parameter for dam inflows as is done for existing environmental flows. Increasing environmental flows would result in less water being available for urban water use. Environmental flows could be increasingly important over time if more water is allocated in future for this purpose. 

Mean inflows to dams in Perth are assumed to be equal to 153 GL per year. Storage capacity in existing dams is 622 GL. The bottom 110 GL of water in existing dams is not readily available for use (Water Corporation 2011b). Initial dam storages are set at 30 per cent of capacity in both the present and historic models, based on observed storage levels (Water Corporation 2011b). 

Table 3.
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Characteristics of dams

	Parameter
	Units
	Melbourne
	Perth
	Sensitivity 

	Mean annual inflows to dams
	GL
	376.391
	153.319
	± 30 per cent

	Total storage capacity
	GL
	1812
	622
	..

	Initial storage (present model)
	Per cent of
total capacity
	50
	30
	± 10 per cent

	Initial storage (historic model)
	Per cent of
total capacity
	35
	30
	± 10 per cent

	Storage capacity not readily available
	GL
	181.2
	110
	..

	Evaporation loss
	Per cent of
previous storage
	..a
	4
	..

	Annual maintenance cost
	$ million/year
	45
	27.8b
	..

	Operating costs
	$/kL
	0.10
	0.10c
	..


a For Melbourne, inflow data already accounts for evaporation equal to the rain falling over dams.  b Water Corporation (2009a)  c ERA (2009)  .. Not applicable.
Desalination

Desalination offers a source of water that is independent of rainfall. However, obtaining water from desalination involves relatively high per unit costs due to its intensive use of energy. There are also high fixed annual costs to maintain a desalination plant.

In Melbourne, the Wonthaggi desalination plant is included as a supply option in the historic model, with investment modelled as a continuous variable. In the present model, the plant is entered as an existing supply source with a capacity of 150 GL, with water available for supply from the second year. An extra 50 GL of capacity is treated as a possible new source in the present model with additional capital costs. Given the desalination options for Melbourne, in the historic model the desalination investment variable is treated as continuous. In the present model, the 50 GL expansion of the existing plant is treated as binary.
The Perth Seawater desalination plant at Kwinana is included in both the present and historic Perth models as a sunk investment. The Perth Seawater desalination plant is able to supply 45 GL per year at a variable cost of $0.47 per kilolitre. The Southern Seawater plant currently under construction is included in the present version of the model as a sunk investment, and is able to supply 50 GL of water from the second time period in the model. In the historic version of the model, the Southern Seawater plant is included as a new supply option, with investment modelled as a binary variable. Additionally, an upgrade to the Southern Seawater plant to supply 100 GL is included. The costs associated with upgrading the desalination plant (table 
3.7) are based on using the upgrade as a contingency water supply with limited integration assets. The additional capacity would utilise existing integration assets, and therefore would only be used in dry years when supply from dams was not utilising the integration network. Full integration to access the water as base load supply irrespective of inflows would cost a further $600 million and increase the operating costs to $0.96 per kilolitre (due to additional costs for green energy). 
Table 3.
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Characteristics of desalination
	Parameter
	Units
	Melbourne
	Perth

	Desalination plant 1a
	
	
	

	Quantity of water available
	GL/year
	150b
	45

	Investment costc
	$ million
	3048b
	..

	Annual maintenance cost
	$ million/year
	2.352b
	5d

	Operating costs
	$/kL
	1.37
	0.47d

	Economic life
	years
	27.7b
	..

	Time: inception → supply
	years
	3b
	..

	Desalination plant 2
	
	
	

	Quantity of water available
	GL/year
	..
	50

	Investment costc
	$ million
	..
	955

	Annual maintenance cost
	$ million/year
	..
	5d

	Operating costs
	$/kL
	..
	0.86d

	Economic life
	years
	..
	30e

	Time: inception → supply
	years
	..
	4f

	Desalination upgradeg, h
	
	
	

	Quantity of water available
	GL/year
	50b
	50i

	Investment costc
	$ million
	1016b
	450i

	Annual maintenance cost
	$ million/year
	0.784b
	3j

	Operating costs
	$/kL
	1.37
	0.63j

	Economic life
	years
	27.7b
	30e

	Time: inception → supply
	years
	3b
	2


a For Melbourne, desalination plant 1 refers to the plant at Wonthaggi. For Perth, desalination plant 1 refers to the Perth Seawater plant at Kwinana.  b VAGO (2010).  c Total undiscounted investment cost.  d Water Corporation (2009a).  e Reverse osmosis membranes are likely to have shorter lifetimes while bulk pipelines are likely to have longer lifetimes (Water Corporation, pers. comm., 12 January 2011).  f Announced in May 2007, supply expected to begin late 2011.  g For Perth, central estimates are based on using the upgrade for contingency supply only. Costs for using the upgrade as a base load supply are: capital cost $1050 million, annual maintenance cost $5 million and operating costs $0.96 per kilolitre. (Water Corporation, pers. comm., 25 January 2011).  h For Melbourne, based on a third of the costs of the initial desalination plant. Operating costs and economic life are assumed to be the same.  i Barnett and Marmion (2011).  j Water Corporation (pers. comm., 25 January 2011)  .. Not applicable.
Rural–urban trade

For the present model of Melbourne, the Sugarloaf pipeline is treated as a sunk investment and has the capacity to supply 100 GL per year (table 
3.8). In the historic model, rural–urban trade is included as a new supply augmentation option, with investment modelled as a continuous variable. 
Rural–urban trade using pipelines allows urban water to be obtained by purchasing water rights from irrigation regions and delivering it to urban centres. This is modelled as an opportunity for urban regions to purchase annual water allocations from rural markets. Given the small size of urban markets relative to rural markets (PC 2008d), the price of water in irrigation markets is assumed to be unaffected by the quantity purchased for urban use. This assumption is made to limit the size of the model by avoiding the need to linearise the supply function of water from irrigation regions. However, the unit price of water purchased depends upon the inflow state. In a dry year price is higher, while in a wet year prices are lower. The Sugarloaf pipeline that runs from the Goulburn River in Yea to the Sugarloaf Reservoir in Melbourne provides the means for delivering the water from 
rural–urban trade. The costs and capacity of the Sugarloaf interconnection are shown in table 
3.8.
For the Perth model, water can be purchased from on-farm water savings, with costs and capacities shown in table 
3.8. In practice, the quantity of water traded is likely to depend on water availability (and hence price) in the irrigation district. A more detailed treatment of trade could allow for the price of water to vary with rainfall and inflows, as is modelled for Melbourne. Investment in rural–urban trade is modelled as a continuous variable.
Table 3.
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Characteristics of rural–urban trade

	Parameter
	Units
	Melbourne
	Perth

	Quantity of water available
	GL/year
	100a
	10b

	Investment costc
	$ million
	750d
	157b

	Annual maintenance cost
	$ million/year
	7.5e
	0b

	Operating costs
	$/kL
	dry
	0.70f
	

	
	
	med
	0.48f
	1.00g

	
	
	wet
	0.25f
	

	Economic life
	years
	50h
	80

	Time: inception → supply
	years
	3d
	3b


a In the historic model, the pipeline has a capacity of 75 GL according to the recorded capacity at that time.  b Water Corporation (2009a).  c Total undiscounted investment cost.  d Victorian Government (2008).  e Estimated at 1 per cent of initial investment cost.  f Data from NWC (2008), Peterson et al. (2004) and Waterexchange (2009) as well as a cost of pumping and treatment of $0.20/kL (IPA 2008).  g Water Corporation (pers. comm., 23 February 2011).  h Bulk pipelines are likely to have lifetimes longer than 50 years while pumps have shorter lifetimes.
Recycling

Investment in recycling in Melbourne is based on the unpublished cost data provided by Melbourne Water (pers. comm., 19 January 2011) and is modelled as a binary variable. The costs apply to the Yarra River Option supply augmentation, detailed in Our Water Our Future (DSE 2008; Victorian Government 2007). From a modelling perspective, the water is treated as a highly processed potable substitute, as reflected in the high unit cost of $1.50 per kilolitre. 

For Perth, water recycling is included as a supply augmentation option in both the historic and present models, with investment modelled as a binary variable. The costs are based on groundwater replenishment (table 3.9). Water is treated and then stored in aquifers before being re-extracted for use. 
Table 3.
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Characteristics of recycling
	Parameter
	Units
	Melbourne
	Perth

	Quantity of water available
	GL/year
	70a
	50b

	Investment costc
	$ million
	2200a
	540b

	Annual maintenance cost
	$ million/year
	22d
	5b

	Operating costs
	$/kL
	1.5e
	0.86b

	Economic life
	years
	27.7f
	50b

	Time: inception → supply
	years
	3
	3


a Melbourne Water (pers. comm., 19 January 2011).  b Water Corporation (2009a).  c Total undiscounted investment cost.  d Estimated at 1 per cent of initial investment cost.  e IPA (2008).  f Same as desalination plant.
Aquifers

Aquifers provide one existing source of water in the historic and present models for Perth. Groundwater extraction from existing aquifers is independent of rainfall and is assumed to have a sustainable yield of 120 GL per year. However, the quantity of water extracted each year from existing aquifers is allowed to vary but is capped at a maximum of 165 GL. The sustainable yield is achieved by constraints that ensure the five year moving average of extractions for a scenario is no more than 120 GL. In the present model, an initial abstraction deficit is included to take account of the recent extraction by Water Corporation. Abstractions are not directly linked to dam storages in the model. 

In addition, options for new aquifers are included in the present and historic models (table 
3.10). New aquifers are assumed to provide a fixed annual sustainable yield. Two types of aquifers are included. Low-cost aquifers are assumed to be developed close to the point of end use. This supply option represents small scale groundwater schemes and expansions of existing aquifers. Investment in low-cost aquifers is modelled as a continuous variable as it is assumed lumpy investment in interconnection pipelines is not required. There is an investment capacity constraint of 48 GL on the low-cost aquifers (the sum of total capacity of all low-cost aquifers cannot be more than 48 GL). 

Table 3.
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Characteristics of aquifers
	Parameter
	Units
	Data
	Source

	Existing aquifers 
	
	
	

	Maximum quantity of water available
	GL/year
	165
	Department of Water
(WA) (2009)

	Average quantity of water available
	GL/year
	120
	Department of Water
(WA) (2009)

	Annual maintenance cost
	$ million/year
	27.8
	Water Corporation (2009a)

	Operating costs
	$/kL
	0.20
	ERA (2009)

	Aquifers (low-cost)
	
	
	

	Quantity of water available
	GL/year
	24
	Water Corporation (2009a)

	Investment costa
	$ million
	225.1
	Water Corporation (2009a)

	Annual maintenance cost
	$ million/year
	3.2
	Water Corporation (2009a)

	Operating costs
	$/kL
	0.20
	ERA (2009)

	Economic life
	years
	50
	Water Corporation (2009a)

	Time: inception → supply
	years
	3
	

	Aquifers (high-cost) 
	
	
	

	Quantity of water available
	GL/year
	45
	

	Investment cost (historic)a
	$ million
	729
	Water Corporation
(sub. DR151) 

	Investment cost (present)a
	$ million
	1200
	Water Corporation
(pers. comm., 23 February 2011) 

	Annual maintenance cost (historic)
	$ million/year
	7b
	

	Annual maintenance cost (present)
	$ million/year
	10
	

	Operating costs
	$/kL
	0.40c
	

	Economic life
	years
	50
	Water Corporation
(pers. comm., 12 January 2011)

	Time: inception → supply (historic)
	years
	3
	

	Time: inception → supply (present)
	years
	4d
	


a Total undiscounted investment cost.  b Estimated at approximately 1 per cent of initial investment cost.  c Estimated as double the cost of low-cost aquifers.  d Additional time is required in the present model to obtain permits and approvals.  
High-cost aquifers are developed further from the point of end use. This option represents larger groundwater schemes (45 GL per year yield) and has additional capital costs for interconnection to the integrated water supply system and higher variable costs for pumping the water. Investment in this supply option is modelled as a binary variable. In the historic model, the capital cost is $675 million. This increases to $1200 million in the present model due to the increased integration costs following the building of the Southern Seawater desalination plant. This is because the transfer infrastructure was common to these two investment options, and following the completion of either investment, further transfer infrastructure becomes more costly. 

Household tanks
Household tanks are included as a supply option in both the historic and present models for Melbourne, with investment modelled as a continuous variable. Tanks provide households with additional water at a relatively low per-unit cost, but involve substantial capital costs per unit of water delivered (table 
3.11). Supply from tanks is rainfall dependent, but like rainfall itself, yields from tanks do not vary as much as inflows to dams (since dams need significant rainfall just to saturate the soil and begin the runoff process — Marsden Jacob Associates (MJA) 2007b). Annual yields from tanks are assumed to be half as variable as inflows to dams, based on the observed relationship between rainfall variability and dam inflows in Melbourne (BOM 2009; Melbourne Water 2009). The chief advantage of tanks over other supply options is their scope to supply water that can be used outdoors at times when water restrictions are enforced. Also, unlike other supply options, in the model there is no limit imposed on the total amount of water that can be supplied from tanks.

Table 3.
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Characteristics of household tanks in Melbournea
	Parameter
	Units
	Data
	Source

	Quantity of water available
	kL/year
	dry
	23
	MJA (2007b)

	
	
	med
	29
	

	
	
	wet
	37
	

	Investment costb
	$
	2300
	MJA (2007b)

	Annual maintenance cost
	$/year
	20
	MJA (2007b)

	Operating costs
	$/kL
	0.05
	MJA (2007b)

	Economic life
	years
	30
	VCEC (2005)


a Each with 5 kL storage capacity.  b Total undiscounted investment cost.
Reticulation costs

There is also a reticulation cost associated with transporting water from bulk storage to end users, assumed to be 12 cents per kilolitre for all sources in Perth (ERA 2009) and 35 cents per kilolitre for all sources in Melbourne (this does not apply to household tanks, which supply water directly to households).
3.
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Calibrating the terminal condition for water storages in dams
Storage decisions reflect expectations about the value of water in the future. This future value of water includes both the expected, discounted value of future consumption and cost savings resulting from using storage to delay investment decisions. In models with finite planning horizons, stocks in the terminal period will be assigned zero value unless a terminal condition is imposed. This is because there is no future consumption nor are there any future investment decisions beyond the horizon modelled. The inclusion of a terminal condition to ensure storages are carried forward in the terminal period is an important inclusion for finite horizon models. It also has important implications for variables (such as prices, investment and storages) in the periods leading up to the terminal period.
The terminal condition should proxy the expected value of a unit of water storage outside of the time period modelled. It can be thought of as a representation of the demand for water stored in the terminal period.

There are three possible approaches to modelling the terminal condition for water storages, outlined below:

· A fixed, target level of storage for the terminal period. This is equivalent to a perfectly inelastic demand for terminal storage.

· An exogenous, fixed price for stored water in the terminal period. This is equivalent to a perfectly elastic demand for terminal storage. 

· A response function, with the price of water stored in the terminal period being a function of the level of storage. 

Here, the third approach is utilised. This was felt to best reflect the value of water in a forward-looking model: if storages are low, water scarcity would be expected to be relatively acute in the future (and therefore water would be of high value); while if storages are high, water would be expected to be relatively abundant (and low value) in the future.

The terminal response function was estimated by examining the value the model attached to initial storages. As mentioned, the terminal problem arises in finite horizon models because they do not include future periods. In principle, every terminal node (figure 2.1) should have another probability tree flowing from it, and the forward-looking expected value of water would drive the value of storages. The implicit value of initial storages reflects the opportunity value of stored water. Therefore, by parameterising initial storages an idea of the initial imputed value of water as a function of the initial storage level can be obtained. This can then be used to estimate a demand function for storage, which can be adapted to be a terminal value response function
 by reflecting expected growth in demand. An illustration of the terminal condition — as well as the values attached to paramaterised initial storages, and the estimated value function before applying the growth rate — can be seen in figures 
3.4 (Melbourne model) and 
3.5 (Perth model). 
The differences in the terminal conditions (and the value of storages) for each city reflect the different roles of storages in each city. For the Melbourne historic model, all existing supply is sourced from dams. For Perth, storages play a lesser role in balancing supply and demand as aquifers and desalination provide additional sources of water.

Figure 3.
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Value of storage in the Melbourne model
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Source: Productivity Commission estimates — Melbourne historic model.
Figure 3.
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Value of storage in the Perth model

	[image: image20.emf]0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700

GL

$/kL

Value function

Terminal condition

Parameterised initial

storages




Source: Productivity Commission estimates — Perth historic model.
�	The Durbin-Watson statistic is used to test for serial correlation of annual inflows. 


�	Aggregate demand in the absence of water restrictions


�	Aggregate consumption is based on (forecast) total annual demand in 2010 of 285 GL (Water Corporation 2009b) with growth of 2.1 per cent per annum. The price is equal to the second pricing block tier for January to June 2011 (up to 350 kL). 


�	There are no published trigger levels for water restrictions in Perth. The Western Australian Government has subsequently removed sprinkler bans with dams at much lower levels.


�	Restricted demand is based on a reduction of 25 GL per year (Water Corporation 2008c).


�	These costs are for dams in Perth. Melbourne specific data were not available.


�	In practice, roof area is likely to constrain the amount of water that can be supplied from tanks in any particular city. However, this would only be an issue after a vast number of tanks had been installed throughout the city, which does not occur in the modelling results.


�	Given that the distribution of inflows does not change over the simulation period.
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