	
	


	
	



A
Linear interpolation method
There are two traditional ways of calculating the contribution of a factor to the growth of a multiplied quantity. However, these methods suffer from the disadvantage that the sum of the individual factor contributions do not add to the growth in the total. A ‘linear interpolation contribution to growth’ can be defined that overcomes this disadvantage.

Contributions to growth in a multiplied quantity (for example, t = xyz) can be calculated by finding the growth in t that would occur if only one factor were to be increased — ie ∆tx = (∆x).y.z. An alternative method is to calculate:

· the change in t were all factors to be increased
· the change were all factors excepting one to be increased
· then subtract one from the other so that:

∆tx = (x+∆x).(y+∆y).(z+∆z) - x.(y+∆y).(z+∆z).
One difficulty with these approaches is that the contributions to growth of the various factors (∆tx, ∆ty, ∆tz) will only add to the overall growth in t in the limiting case where the growth in t is infinitesimally small. This is because of the presence of cross-terms (∆x.∆y, ∆x.∆z, ∆y.∆z and ∆x.∆y.∆z, etc). Consider the example where x1 = 10, y1 = 10 and z1 = 100. If each factor grew by the same proportion, say 10 per cent (so that ∆x = 1, ∆y = 1, ∆z = 10), then the growth in the total (∆t) would be 3310 or 33.1 per cent. In contrast, using the first method above would give ∆t = (∆x).y.z+(∆y).x.z+(∆z).x.z = 3000.
A more sophisticated approach is to define a ‘linear interpolation contribution to growth’ (CLI) for each factor, with the property that the sum of individual linear interpolation contributions is identical to the total growth in t. This linear interpolation contribution is defined as the integral of a factor’s partial contributions to growth
 calculated at every point along a straight line interval of growth in t.
A particular CLI can be approximated by:
· dividing an actual growth in t between two points into a very large number of small steps along a straight line
· finding a particular factor’s partial contribution after each of these small steps
· summing the partial contributions.
In the two factor case, the line along which the integral is taken is the line formed by the projection of the t = xy line (which is a line in three dimensions) on the xy plane. The first panel in figure A.1 below shows a graphical example.
Figure A.
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Linear interpolation contribution of the growth in x to the growth in t = xy
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Contributions to growth over a curved growth path can also be approximated by dividing the path into a number of linear segments, then summing CLI’s calculated for each segment.

Deriving the linear interpolation contribution algebraically

The linear interpolation contribution can be calculated using areas as shown in the second panel of figure A.1.
 For example, in the two factor case the calculation is as follows:

(t+∆t) = (x+∆x)(y+∆y)

(t+∆t) = xy + y.∆x + x.∆y + ∆x.∆y
∆t = y.∆x + x.∆y + ∆x.∆y
The linear interpolation contribution of x is then y.∆x + ½.∆x.∆y
For the three factor case the calculation is (t+∆t) = (x+∆x).(y+∆y).(z+∆z). So, after removing t = xyz:
∆t = yz.∆x + xz.∆y + xy.∆z + z.∆x.∆y + y.∆x.∆z + x.∆y.∆z + ∆x.∆y.∆z
Now, since the three linear interpolation contributions share mixed partial product terms equally, this implies that the linear interpolation contribution of factor x to the growth in t is ∆t(cli)x = yz.∆x + ½.z.∆x.∆y + ½.y.∆x.∆z + ⅓.∆x.∆y.∆z.
(Below we prove that this formula is the correct one for three factors without relying on the assertion that the mixed factor terms are shared equally.)
To continue with the above example (where x1 = 10, y1 = 10, z1 = 100, ∆x = 1, ∆y = 1 and ∆z = 10), then the linear interpolation contributions of each factor will be ∆t(cli)x = ∆t(cli)y = ∆t(cli)z = 1103.3333, which sum to the total growth in t.

Proving the linear interpolation formula for three factors holds using integration
The formula for the linear interpolation contribution can also be derived using area, volume and higher dimensional integrals. This is useful because it is a reasonably simple way of showing the CLI formula holds when there are more than two factors.
With two factors, the function t = xy measures the size of an area. The change in the amount of this area (∆t) is given by x2y2 – x1y1 (a larger rectangle less a smaller rectangle). So the CLI of x is the area between the projection of the t = xy line on the xy plane and the x axis (this is the shaded area shown in the first panel of figure A.1 above), while the CLI of y is the area between the projection of the t = xy line on the xy plane and the y axis.
With three factors the function t = xyz measures the size of a volume. Here the ∆t volume is equivalent to a larger rectangular box with a smaller rectangular box removed (x2y2z2 – x1y1z1). The linear interpolation contributions of changes in x, y and z are then three volumes that add to the this total volume. The CLI of x is the volume found by integrating in the z, then y and then x directions
 or in the y then z then x directions. Similarly, The CLI of y is the volume found by integrating in the y direction last and the CLI of z is the volume found by integrating in the z direction last.

It is also possible to find the equivalent of the CLI except now for a curve rather than a straight line. That is the integral of the partial changes in t for changes in x over a curved line segment divided into an infinite number of increments (in). This can be designated by:
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The curved line formed from the various points (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) etc. can be used to calculate the various CLI integrals (where tn measures the volume of a box that has the points (0,0,0) and (xn,yn,zn) as two of its vertices and has as three of its sides parts of the xy, xz and yz planes). The projection of this curved line on the xz plane is the curved line z = f1(x) and its projection on the xy plane is the curved line y = f2(x).
So with three factors:  
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In the linear case
 we substitute z = f1(x) and y = f2(x) with z = α1x and y = α2x, so:
∆t(cli)x = 
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∆t(cli)x = ⅓α1α2(x23 - x13)
It can be shown that this is equivalent to yz.∆x + ½.z.∆x.∆y + ½.y.∆x.∆z + ⅓.∆x.∆y.∆z where:

z = α1x1,  y = α2x1,  ∆x = x2 - x1,  ∆y = α2(x2 - x1)  and  ∆z = α1(x2 - x1)
After substituting it can be seen that yz.∆x + ½.z.∆x.∆y + ½.y.∆x.∆z + ⅓.∆x.∆y.∆z
= α1α2x12(x2 - x1) + ½α1α2x1(x2 - x1)2 + ½α1α2x1(x2 - x1)2 + ⅓α1α2(x2 - x1)3
= α1α2(x12x2 - x13) + α1α2x1(x22 - 2x1x2 + x12) + ⅓α1α2(x23 - 3x1x22 + 3x12x2 - x13)
= α1α2(x12x2 - x13 + x1x22 - 2x12x2 + x13 + ⅓x23 - x1x22 + x12x2 - ⅓x13)
= α1α2(x13 - x13 + x12x2 + x12x2 - 2x12x2 + x1x22- x1x22 + ⅓x23 - ⅓x13)
= ⅓α1α2(x23 - x13)
Summary
The linear interpolation contribution to growth (for a total that is the product of a number of factors) is the integral of the partial changes in the total ascribed to a particular factor, evaluated over a linear segment of growth in the total.
In order to derive the formula for the linear interpolation contribution it is useful to think of the two factor case in terms of areas and the three factor case in terms of volumes.
In the two factor case, the linear interpolation contribution change in t for a change in a particular factor is the area between the axis of the factor in question and the projection of the line t = xy on the xy plane evaluated over an interval.
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 dy dx = ½α1(x22 - x12) = y.∆x + ½.∆x.∆y
And the two linear interpolation contributions add to the total change:

∆t(linear) = ∆t(cli)x + ∆t(cli)y
In the three factor case, the linear interpolation contribution change in t for a change in x is equivalent to the volume found using the triple integral:
∆t(cli)x = 
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 dz dy dx = ⅓α1α2(x23 - x13)

= yz.∆x + ½.z.∆x.∆y + ½.y.∆x.∆z + ⅓.∆x.∆y.∆z
And the three linear interpolation contributions add to the total change:
∆t(linear) = ∆t(cli)x + ∆t(cli)y + ∆t(cli)z































































� A partial change is the change in the total that would occur were one factor to increase by a very small amount with all other factors remaining unchanged.


� The linear interpolation was originally derived using limits (see PC 2005, Technical Paper 6)


� That is integrating in the z direction between the z = 0 and the z = f1(x) planes, then integrating in the y direction the between y = 0 and y = f2(x) lines and then integrating in the x direction between the x1 and x2 points.


� The alphas are simply constants. They can be calculated using values of x, y and z. For example α1 = (z2-z1)/(x2-x1).
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