	
	



	
	



[bookmark: _AppendixNotByChapter][bookmark: ChapterNumber][bookmark: _GoBack][bookmark: ChapterTitle]B	Optimal matching and cluster analysis
[bookmark: begin]In the social sciences, sequence analysis is frequently conducted using optimal matching (OM) to measure the similarity of individual sequences of activities and cluster analysis (CA) to identify groups of similar sequences. Together the techniques are referred to as OMCA.
OMCA is a tool to describe sequence data. It does not impose any assumptions about the data generating process (Martin and Wiggins 2011). According to Quintini and Manfredi (2009, p. 15), OMCA ‘allows us to explore a dataset and discover (or confirm) some underlying patterns without any priors based on economic theory’. 
Uncovering the same amount of information in the data using more typical descriptive statistics is difficult, if possible at all (Corrales‑Herrero and Rodríguez‑Prado 2012). The longer the sequences, the greater the number of possible activities and the larger the dataset, the greater the possible number of unique sequences. Analysis becomes too difficult, particularly where there are similarities in the order of activities across time, but differences in timing and persistence (Brzinsky‑Fay 2007). 
OMCA reduces the heterogeneity in the data to a level where patterns can be detected and sub‑groups of individuals with similar sequences can be identified (Anyadike‑Danes and McVicar 2010). 
This appendix provides an overview of how the techniques work (sections B.1 and B.2) and their limitations (section B.3).[footnoteRef:1],[footnoteRef:2] [1:  	Although there are alternative methods for sequence analysis, these are beyond the scope of this paper and will not be covered.]  [2:  	This paper uses Stata’s SQ routines developed by Brzinsky‑Fay, Kohler and Luniak (2006) for analysing sequence data. The routines do not support the use of survey weights. ] 

[bookmark: OLE_LINK5]B.1	Optimal matching
OM is used to compare sequences of events, activities or states across time (box B.1). The use of OM is a relatively recent development in the labour market transitions literature, compared to other fields such as biology. 

	[bookmark: OLE_LINK6]Box B.1	Origins and applications of OM

	OM originated in the field of computer science in the mid‑1960s (Lesnard 2010). It was later adopted in other areas of science (for example, biologists used OM to compare deoxy‑ribonucleic acid (DNA) sequences) (Brzinsky‑Fay 2007). In the mid‑1980s, the technique was first applied in the social sciences by Abbott and Forrest (Brzinsky‑Fay 2007). By combining OM with cluster analysis, common patterns among sequences are more easily identified. A few examples are patterns of:
· types of housing (house, unit) and housing states (buying, renting)
· mental health patients’ service use and hospitalisation
· steps in traditional dances
· sounds in bird calls (Martin and Wiggins 2011).
Although OM is the predominant approach to measuring dissimilarity between sequences, Martin and Wiggins indicated that the use of OM and cluster analysis have yet to meet widespread acceptance in the social science literature: 
OM … is not a brand new method any longer, but is still sufficiently maverick that most authors feel obliged to introduce its technicalities in some detail in every publication (rather as if one were to explain the idea of minimizing squared errors every time one published an OLS regression analysis). (2011, p. 386)
Over the past decade or more, the OM technique (and OMCA) has increasingly been used to better understand different career pathways and transitions in the labour market (Martin and Wiggins 2011), with the focus to date largely being on youths.

	

	


OM measures similarity by matching two sequences in an optimal way by quantifying (dis)similarity on a numerical scale. It does not measure similarity using just two or three categories (for example, exactly the same, completely different or somewhat different). Instead, OM allows the analyst to examine a large number of sequences with multiple activities in many (pattern) variations and quantify ‘how different’ the sequences are. By measuring how close each pair of sequences in the dataset is to each other, all sequences can be ranked according to their similarity.
More specifically, the technique identifies the number and type of changes that must be made to one sequence to transform it to be identical to another sequence. 
Transformations
In transforming sequences, three types of changes are permitted: substitutions (swap one activity for another); deletions; and insertions. Deletions and insertions are used to align sequences that are similar over different intervals. A realignment can be effected by an insertion in one sequence or a deletion in the other. Since an insertion in one sequence is equivalent to a deletion in the other, the two operations are grouped together and called ‘indels’. 
Each type of operation is given a ‘cost’, and the distance is the sum of these costs (box B.2).[footnoteRef:3] If there are different ways to transform the sequences, resulting in different total costs, the distance between the two sequences is given by the minimum total cost of the operations required to transform one sequence into another. [3:  	The costs of substitutions can be allowed to differ according to the pair of activities concerned (discussed below).] 


	[bookmark: OLE_LINK1]Box B.2	Calculating the distance between two activity sequences

	To illustrate how OM works, consider two short hypothetical activity sequences, for Jane and Clare. Jane was not in the labour force (NILF) for the first month but started a new job in the second month. That job was not a good fit for her and she spent the third month looking for a new job. She was employed in the second job for the fourth and fifth months. Clare, on the other hand, was employed at the beginning of the first month, but lost her job at the end of the second month. It took her a month to find another job, and after working in that job for two months she decided to study while continuing to work. So the two women have the same activities in only one of the five months (month 4).
	[image: ]
Clare’s sequence can be transformed to be identical to Jane’s by substituting the four months of activities that differ. Superficially, Jane and Clare’s sequences appear dissimilar. It takes 4 substitutions, or equivalently, 4 insertions and 4 deletions (8 indels) to align them, as shown in transformation A below. 

	(Continued next page)

	

	



	Box B.2	(continued)

	To keep things simple, no preference is given to a particular type of change. Each indel operation ‘costs’ 1 and each substitution ‘costs’ 2 (as a substitution is equivalent to an insertion at one point in a sequence and a deletion at the next point along the same sequence). So regardless of whether 4 substitutions or 8 indels are used to transform Clare’s sequence to match Jane’s, it costs 8 to do so.
	[image: ]
An alternative transformation can be used to align the sequences. If ‘NILF’ is inserted at the first month of Clare’s sequence and ‘work & study’ is deleted in month 5, then this aligns the sequences for the other four months without requiring any substitutions. The distance, or cost of transforming Clare’s sequence into Jane’s, is now 2 indels:
	[image: ]
Transformation B uses 2 indels compared to transformation A, which uses the equivalent of 8 indels. Therefore, B is a less costly way to achieve alignment of the sequences. With transformation B, Clare’s sequence is a quarter of the distance from Jane’s that was indicated with transformation A. OM would determine transformation B is the optimal way to match the sequences, and that there is a distance of 2 between Jane and Clare’s sequences. 
To give some intuition, the maximum distance between two sequences with five observation periods, and substitution costs of 2, would be 10. For example, this is the distance between a sequence with five months of work and a sequence with five months of NILF. 

	Source: Adapted from Quintini and Manfredi (2009).

	

	


Setting substitution and indel costs
The cost of substituting one activity for another must be specified before the OM stage of sequence analysis can be performed (Brzinsky‑Fay and Kohler 2010). According to Martin and Wiggins (2011, p. 389), ‘[s]ubstitution cost specification is a sore point in the world of OM. It is neither obvious nor agreed among researchers which principles should guide it’. 
The literature recognises three approaches to setting substitution costs: default; theoretically-based; and data-driven. In the default approach, a substitution between any pair of activities is assigned the same cost — for most studies that cost is 2.[footnoteRef:4] The other two approaches require substitution costs to be specified as a square matrix, in which the elements give the cost of substituting each type of activity for every other type. By using a matrix, the costs can differ according to the pair of activities concerned. However, as each cost represents a distance between two activities, the matrix must be symmetric — that is, the distance from activity A to activity B must be the same as that from activity B to activity A.[footnoteRef:5]  [4:  	In Stata, and in other statistical programs, the default is to set the costs of indels to 1 and substitutions to 2, so that an insertion and a deletion are assigned the same cost as a substitution. Since all substitutions have the same cost under the default settings, all types of activities are equally distant from each other.]  [5:  	Elements corresponding to the same two activities (the ‘diagonal’) will contain zeros to indicate that the distance between an activity and itself is zero. ] 

In the theoretically‑based approach, substitution costs are set in a subjective manner to show (for each activity) which of the activities ought to be ‘closer’ or ‘more distant’ according to theory (box B.3). A data-driven approach uses the transitions in the data to determine how close the activities are, and is considered to be the most neutral method (Anyadike‑Danes and McVicar 2010; Hollister 2009). As a result, the data-driven approach is becoming a more common choice in the literature and is used to set substitution costs for this analysis.
A second type of cost that must be chosen is the cost of indels. The setting of indel costs is rarely discussed in the literature (Albert Verdú and Davia 2010). As a substitution is equivalent to two indel operations (an insertion and a deletion), the relative magnitudes of the two types of cost can affect which types of operation are used to determine the distance between two sequences. Therefore, the researcher needs to decide in advance the relative importance of timing (indels) compared to similarity of sections of sequences (substitutions). For example, is it more important that two people have a spell of employment in the same period, or is it more important that they have the same sequence of employment, unemployment and NILF activities? The substitution costs used in this paper are all less than 2, and hence less than double the cost of an indel transformation, which is set to 1.
Although there is no agreement on how costs should be set, there does appear to be consensus on the importance of conducting sensitivity analysis with different costs. Several papers have considered the impact of different substitution costs on the results of OM (for example, Anyadike-Danes and McVicar 2003). Many papers reported that the results were robust to changing substitution costs (Corrales-Herrero and Rodríguez‑Prado 2012). Some papers (including Brzinsky-Fay 2007) also tested the impact of varying the cost of indels, but found only slight differences in the results. 

	[bookmark: OLE_LINK2]Box B.3	Setting substitution costs on a theoretical basis

	Theory may suggest that the strength of attachment to the labour market can guide the setting of substitution costs. For example, Anyadike‑Danes and McVicar (2010) set the cost of substituting between employment and unemployment to be lower than that between employment and NILF. However, theory does not indicate how ‘close’ or ‘distant’ any two activities should be, and so this decision is subjective (Hollister 2009). 
The subjective nature of theoretically‑based substitution cost matrices is reflected in the transitions literature. There are large differences in substitution costs, in both relative and absolute terms. 
Many substitution costs used in the literature were not comparable to the substitution costs used in this paper. There were two reasons for this. First, the literature often relates to youths only, and this paper considers additional age groups, including three older groups that are likely to experience different transitions. Second, the activities in this analysis are different from those in most other papers. In particular, there are two activities in one category — work and study — so that the distance between work and study and either unemployment or NILF should be greater than the distance between work and study and either work only or study only.

	

	


For each age group, the substitution cost matrix has been determined using the probability of a transition from one activity to another in the dataset. That is, the substitution cost is inversely related to the average probability of transitions between activities A and B.[footnoteRef:6] The substitution costs are the lowest for pairs of activities that have the greatest number of transitions between them. Box B.4 shows the substitution cost matrix for youths and compares it to the matrix for seniors. [6:  	Actually 2 – Pr(A to B) – Pr(B to A), which preserves symmetry in the substitution costs. Each probability is based on the transition matrices, averaged over time. Other data‑driven options are to use the minimum or maximum probability for a substitution pair.] 


	[bookmark: OLE_LINK3]Box B.4	Substitution cost matrices for youths and seniors

	The data‑driven substitution cost matrices for youths and seniors are shown below. The diagonal elements are zero, as there is no change of activity. The off‑diagonal elements represent the cost of substituting one activity with another. Therefore, the matrices are symmetric. 
The costs are inversely related to the probability of a transition, and are less than (but very close to) 2 because the probability that an individual will transition to a different activity in any month is low. What is important to note in the tables is the relative differences in costs. 
For youths, activities study only and work and study are relatively ‘close’. By comparison, study only is ‘further away’ from work only. This is because there are more transitions in the data between study only and work and study than between study only and work only. 
For seniors, study only is closer to NILF than any other activity. But the closest pair of activities is work only and NILF, since transitions from work to NILF are frequent in the data relative to any other type of transition, due to retirement. 
Table 1: Youths	
	
	Study only
	Work & study
	Work only
	Unemployment
	NILF

	Study only
	0.00000
	1.98942
	1.99820
	1.99769
	1.99759

	Work & study
	1.98942
	0.00000
	1.98142
	1.99954
	1.99964

	Work only
	1.99820
	1.98142
	0.00000
	1.98981
	1.99203

	Unemployment
	1.99769
	1.99954
	1.98981
	0.00000
	1.99761

	NILF
	1.99759
	1.99964
	1.99203
	1.99761
	0.00000


Table 2: Seniors
	
	Study only
	Work & study
	Work only
	Unemployment
	NILF

	Study only
	0.00000
	1.99981
	1.99995
	1.99975
	1.99890

	Work & study
	1.99981
	0.00000
	1.99793
	1.99998
	1.99994

	Work only
	1.99995
	1.99793
	0.00000
	1.99823
	1.98896

	Unemployment
	1.99975
	1.99998
	1.99823
	0.00000
	1.99871

	NILF
	1.99890
	1.99994
	1.98896
	1.99871
	0.00000




	Source: Authors’ estimates based on HILDA waves 1–10.

	

	


The substitution and indel costs used for this paper imply that greater importance is placed on the similarity of sections of sequences than the timing of activities. This is reasonable because the age segments used in this analysis include people of different ages and, therefore, different stages of life. In contrast, if a cohort of individuals of the same age (as in the Longitudinal Surveys of Australian Youth (LSAY)) had been used, then they would be likely to make transitions at similar times, and so in that case, greater consideration would be given to the timing of activities.
After setting substitution and indel costs, for each pair of sequences the OM technique then determines the minimum total cost of the transformation. That total cost is then the ‘distance’ between those two sequences. Pairs of very different sequences have relatively larger distances than pairs of similar sequences (Corrales‑Herrero and Rodríguez‑Prado 2012). These distances are collected into a matrix and can be used to group similar sequences together.
[bookmark: OLE_LINK9]B.2	Cluster analysis
Cluster analysis includes a variety of techniques that aim to identify groups in data. In the context of sequence analysis, cluster analysis identifies groups of individuals with similar activity sequences, based on the distances derived through OM.
In this paper, cluster analysis is hierarchical and agglomerative: it starts with all individuals in their own cluster (or group) and, in an iterative process, progressively combines the clusters until all individuals in the sample are in a single cluster.[footnoteRef:7] Diagnostic information is then used to determine the point in this process at which the appropriate number of clusters is formed.  [7:  	Instead of a hierarchical approach, the individuals could be partitioned into a pre‑determined number of clusters. ] 

The clustering process
The distance calculated from OM is the starting point for the cluster analysis. In this analysis, the clustering method used is Ward’s method.[footnoteRef:8]  [8:  	There are several alternatives available, including single linkage, complete linkage, average linkage, centroid method and density linkage (see Lattin, Carroll and Green (2003) for further details).] 

Ward’s method calculates the change in the Error Sum‑of‑Squares (ESS) that would result from each pair of clusters being combined. The ESS is the sum of the squared distances of each individual sequence to the centre of the cluster. The ESS is therefore a measure of homogeneity of a cluster. Pairs of clusters are selected for joining according to the minimum increase in ESS. This process is repeated until there is one cluster. Diagnostic output can then be used to determine where in the clustering process the appropriate number of clusters is formed (discussed below). Ward’s measure is favoured because it is commonly used in the literature on labour market transitions and, according to Corrales‑Herrero and Rodríguez‑Prado (2012, p. 3783), it results in the ‘most homogeneous clusters’. 
The progressive clustering process is shown in a tree diagram called a dendrogram (box B.5). The joining together of two clusters is shown by a horizontal line, with a measure related to distance between clusters shown on the vertical scale. The dendrogram is used to decide how many clusters there should be, which is a matter of judgment.

	[bookmark: OLE_LINK4]Box B.5	Interpreting dendrograms

	Consider four sequences in addition to Jane and Clare from box B.2. OM calculated that the minimum distance between Jane and Clare is 2 (2 indels). Patrick and Noel are also a distance of 2 apart (one substitution), but both are further than 2 away from Jane or Clare. Likewise, it would take 2 indels to align Luisa and Zoe’s sequences, and neither is closer than 2 to Jane, Clare, Patrick or Noel. So Jane and Clare are closest to each other, as are Patrick and Noel, and Luisa and Zoe. 
	[image: ]

	(Continued next page)

	

	



	[bookmark: OLE_LINK8]Box B.5	(continued)

	The first stage of agglomerative clustering is where each individual is in their own cluster. This is shown along the horizontal axis in the dendrogram below. Along the vertical axis the distance between the clusters is shown, which at this stage is zero. In the second stage, those individuals whose trajectories are the shortest distance apart are clustered together. At a distance of 2, Luisa and Zoe form the first cluster, Patrick and Noel the second, and Clare and Jane the third. 
[image: ]
The heterogeneity of each of the clusters is calculated using Ward’s method. The increase in within‑cluster variation that would result from joining the third cluster with either of the other clusters would be greater than the increase in variation resulting from combining clusters one and two. Therefore at the third round, there are just two clusters with Patrick, Noel, Luisa and Zoe in the first, and Jane and Clare in the second. In the final round the two clusters are joined to form a single cluster.
Drawing a horizontal line at different distances can help determine the number of clusters in the data. The dendrogram shows that because the three pairs of sequences are equally alike, and therefore join together at the same distance, there can be no more than three clusters. One cluster would have too much variation, and no pattern would be discernable. The six cluster solution would not reduce the variability in the data. So the choice is between two and three clusters. 
A dashed line is drawn at a distance where there are three clusters in the data. This was done because the distance between the three and two cluster solutions, 2, is not much less than the distance between the two and one cluster solution. The three cluster solution is the first solution that is stable over a reasonable distance. 

	

	


Determining the number of clusters
There are several approaches to identifying the number of clusters. Most test statistics commonly used to validate cluster solutions cannot be applied to sequence data (Brzinsky‑Fay 2007). The possible number of clusters ranges between one and the number of individuals included in the analysis. However, choosing either the upper limit or the lower limit of this range would be of no benefit as it would not reduce any of the variation in the data. 
In deciding the number of clusters in between the upper and lower limits, a balance between the variation within, and the variation between, clusters needs to be struck. Having too few clusters risks producing too much variation within the clusters, making it difficult to identify what the sequences in a cluster have in common. On the other hand, having too many clusters makes it difficult to identify what distinguishes sequences in one cluster from those in another. 
It is the degree of subjectivity in determining the number of clusters in the data that is the most criticised aspect of cluster analysis. The example in box B.5 illustrates the subjectivity in choosing the number of clusters. Either two or three clusters are possible, but three clusters are chosen with the aid of the dendrogram. 
Some dendrograms are more difficult to interpret than others, making the number of clusters in the data less obvious to the researcher. Although not an issue in this analysis, the dendrogram may not show a distinct stage in the agglomerative process of clustering all individuals into one cluster where the cluster solution is less likely to change with increasing distance — the distances between clusters may appear to be very similar, without a large increase in distance at a particular stage.[footnoteRef:9] [9:  	Aisenbrey and Fasang (2010) suggest the use of cluster cut-off criteria in these instances to validate the number of clusters found in the data. Alternatively, the relative within and between cluster variation could be compared at each stage of the clustering process. ] 

To reduce the degree of subjectivity involved in the analysis, the number of clusters was determined using a dendrogram in combination with descriptive analysis of the clusters to examine their ‘plausibility’. For youths, the dendrogram indicated five clusters. For each of the young adult, mature adult and senior age segments, the dendrograms suggested four clusters. These groups were found to be plausible for each age segment, and descriptive analysis readily provided a story for each cluster. 
Labelling and describing the clusters
There are no set rules for labelling clusters. However, clusters are often labelled in a descriptive way. In the education and labour market transitions literature, the term pathway (which picks up on the sequencing of activities) is used instead of cluster. A pathway label may then derive from a commonly observed pattern of activities (for example, the NILF to Work pathway for young adults), or it may relate to the proportion of the time period spent in a particular activity or activities (for example, the NILF pathway for seniors and the Prolonged NILF pathways for the other age segments) (chapter 3). The labels are essentially arbitrary.
Sequence index plots are useful to see what ‘most’ individuals in the pathway do over time, and if there is a tendency for a particular activity to follow another activity (for example, a transition from working to retirement by older workers). The chronograph is another plot that is useful to see what the main activities are at various points in time.
Descriptive analysis is also valuable. Spell incidence and duration give additional information about what individuals are doing. Information on characteristics of individuals belonging to pathways indicates what individuals have in common with each other compared to individuals in other pathways.
The plots and descriptive analysis will indicate whether there is a reasonable level of within cluster variation and whether the pathways and their labels are meaningful (Corrales‑Herrero and Rodríguez‑Prado 2012).
Descriptive analysis of the pathways may also lead to forming a hypothesis about which factors are important for determining pathway membership. These can be tested using statistical models (box B.6). What this suggests is a complementary, rather than alternative, role for OMCA to more conventional statistical analysis. According to Halpin (2010, p. 367), sequence analysis ‘gives a holistic perspective’, providing context to econometric analysis.

	[bookmark: OLE_LINK7]Box B.6	Further utilisation of OMCA results 

	The results of OMCA have been used in different ways in the literature on transitions. OM can be an input to cluster or regression analysis. Pathway (cluster) membership has also been used in regression analysis. The results of OM(CA) have been used as either an explanatory variable, or more typically, as the dependent variable in regressions. 
For example, in Dorsett and Lucchino’s (2012) analysis of British youth transitions, pathway membership was modelled as the dependent variable using a multinomial logit (MNL) model. The results indicated that gender, grades at school, housing tenure, parental qualifications, and the labour market status of family members were significantly associated with the future labour market outcomes of youths as represented by the pathway. In another study of British youths, Anyadike‑Danes and McVicar (2003) conducted similar analysis using a MNL model. Corrales‑Herrero and Rodríguez‑Prado (2012) and Quintini and Manfredi (2009) applied MNL models to analyse the determinants of pathway membership for Spanish and US youths, respectively. 
Instead of using pathway membership as the dependent variable, Malo and Muñoz‑Bullón (2003) used the distance measure from OM as the dependent variable in a regression, where distance was measured from the median sequence for each age segment. However, it is unclear how to interpret the results of such a regression, as two very different sequences may have the same distance (McVicar and Anyadike‑Danes 2010). 
Alternatively, pathway membership may be viewed as an explanatory variable in an analysis of labour market and educational outcomes (Brzinsky‑Fay 2007). For example, Fuller (2011) modelled wages with pathway membership as one of the explanatory variables. Han and Moen (1999) modelled characteristics of retirement and retirement plans using career pathway as an explanatory variable. 

	

	


B.3	Limitations of OMCA techniques
Some limitations of OMCA techniques are discussed in the sequence analysis literature. This section presents the limitations that are relevant to this study and, where they exist, practical solutions to minimise their impact. First, it is difficult to account for sample design and attrition through the use of weights. Second, the substitution cost matrix must be symmetric, which in practice means that the cost of substituting one activity for another cannot be dependent on the direction of the transition. Third, as substitution costs are set in this analysis, the matrix does not change over time — so where a transition occurs in the sequence has no bearing on the cost of a substitution. 
The difficulty in accommodating sample weights
The results in this paper are unweighted because the OMCA commands in Stata do not support weighting in either the OM or clustering processes. Also, the weights in the Household, Income and Labour Dynamics in Australia (HILDA) Survey data are inadequate in adjusting the sub‑sample used in this analysis to be representative of the population (appendix A).
If appropriate weights were available, they could be used in estimating the transition probabilities and, therefore, in deriving the substitution cost matrix to be used in OM (Lesnard 2010). However, the clustering process would still not accommodate the weights.
The substitution cost matrix must be symmetric 
Some researchers, for example Aisenbrey and Fasang (2010), argue that a symmetric substitution cost matrix is not reflective of reality. For example, the Education to Work pathway is characterised by a transition from study to work. As a result of the matrix structure, however, a substitution of work for study has the same cost as the substitution of study for work. This is considered to be a limitation by those who view substitutions in the OM process as representative of transitions in the sequence data. 
However, Martin and Wiggins (2011) argue that this interpretation of the substitution cost matrix is a misunderstanding of the role the matrix plays in OM. It is important to bear in mind that the aim of a substitution cost matrix is not to mimic transitions, but to simply reflect how close different activities are to each other.
Substitution costs are not dynamic
In this paper, substitution costs are restricted to be the same across time. Lesnard (2010) states that assuming distances between activities are time invariant is a restrictive assumption. He argues that the distance between employment and unemployment, for example, should vary across time — they should be close to each other when the unemployment rate is high and distant when it is low. 
Lesnard (2006) developed an extension to OM that allows substitution costs to vary across time.[footnoteRef:10] According to Aisenbrey and Fasang (2010, p. 437), Lesnard’s distance measure: [10:  	The approach, which has been named the dynamic Hamming model, is an extension to Hamming’s distance, which is equal to the number of substitutions required to align two sequences. See Lesnard (2010) for further discussion about dynamic substitution costs. ] 

… is particularly useful for applications … in which the exact timing of states within sequences is of particular theoretical importance, such as in the analysis of retirement trajectories …
However, dynamic substitution costs are not used in this study as the importance of the dynamic element has yet to be established empirically (Hollister 2009). Moreover, implementing dynamics would involve calculating 120 data‑driven matrices instead of one. This would significantly add to the complexity of the computation task in OM.
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Transformation A (4 substitutions; or 8 indels)

Month 1 Month 2 Month 3 Month 4  Month 5

Jane NILF Work only UnemploymentWork only Work only

Clare Work only Unemployment Work only Work onlyWork & study

NILF Work only Unemployment Work only

(Substitution)(Substitution) (Substitution) (Substitution)
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Transformation B  (2 indels)

Month 1 Month 2 Month 3 Month 4  Month 5

Jane NILF Work only UnemploymentWork only Work only

Clare Work only UnemploymentWork only Work only Work & study

(Deletion)

NILF

(Insertion)
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Month 1 Month 2 Month 3 Month 4  Month 5

Jane NILF Work only Unemployment Work only Work only

Clare Work only Unemployment Work only Work only Work & study

Patrick Work only Work only Work only Work only NILF

Noel Work only Work only Work only Work only Work only

Luisa Study only Work & study Work only Work only Work only

Zoe Work & study Work only Work only Work only Work only
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Month 1 Month 2 Month 3 Month 4  Month 5

Jane NILF Work only UnemploymentWork only Work only

Clare Work only Unemployment Work only Work onlyWork & study


