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Abstract

Estimates of the cost of equity for industries are imprecise. Standard errors of more
than 3.0% per year are typical for both the CAPM and the three-factor model of Fama
and French (1993). These large standard errors are the result of (i) uncertainty about true
factor risk premiums and (ii) imprecise estimates of the loadings of industries on the risk
factors. Estimates of the cost of equity for firms and projects are surely even less precise.
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1. Introduction

Textbooks in corporate finance advise managers to evaluate an investment
project by comparing the required outlay to the present value of the expected
future cash flows. Most textbooks emphasize the uncertainty in projections of
cash flows. Our main point is that the cost of capital estimates used to discount
cash flows are also unavoidably imprecise.

There are at least three cost of capital problems. First, it is not clear which
asset pricing model should be used. The capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965) is the common choice. Recent evidence
suggests, however, that the CAPM is not a good description of expected returns.
As an alternative, Fama and French (1993, 1995) propose a three-factor pricing
model. But some argue that this model is empirically inspired and lacks strong

*Corresponding author.

We acknowledge the helpful comments of Kent Daniel, Ed George, Mark Mitchell, Stewart Myers,
Stephen Ross, G. William Schwert, Ross Stevens, and Jay Shanken, the referee.

0304-405X/97/$15.00 © 1997 Elsevier Science S.A. All rights reserved
PII S0304-405X(96)00896-3



154 E.F. Fama, KR. French/Journal of Financial Economics 43 (1997) 153—193

theoretical foundations. Other multifactor models have been used to estimate
the cost of capital (Bower, Bower, and Logue, 1984; Goldenberg and Robin,
1991; Bower and Schink, 1994; Elton, Gruber, and Mei, 1994), but there is no
consensus about which is best. And the choice of model is important. In the tests
below, differences of 2% per year between estimates of the cost of equity from
the CAPM and our three-factor model are common.

We do not take a stance on which is the right asset pricing model. Instead we
use both the CAPM and our three-factor model to estimate industry costs of
equity (CE’s). Our goal is to illustrate in detail two problems that plague CE
estimates from any asset pricing model.

The first problem is imprecise estimates of risk loadings. Estimates of CAPM
and three-factor risk loadings for industries would be precise if the loadings were
constant. We find, however, that there is strong variation through time in the
CAPM and three-factor risk loadings of industries. As a result, if we are trying to
measure an industry’s current risk loadings and cost of equity, estimates from
full sample (1963-1994) regressions are no more accurate than the imprecise
estimates from regressions that use only the latest three years of data. And
industries give an understated picture of the problems that will arise in estima-
ting risk loadings for individual firms and investment projects.

The second problem is imprecise estimates of factor risk premiums. For
example, the price of risk in the CAPM is the expected return on the market
portfolio minus the risk-free interest rate, E(Ry) — R;. The annualized average
excess return on the Center for Research in Security Prices (CRSP) value-weight
market portfolio of NYSE, AMEX, and NASDAQ stocks for our 1963-1994
sample period is 5.16%; its standard error is 2.71%. Thus, if we use the historical
market premium to estimate the expected premium, the traditional plus-and-minus-
two-standard-error interval ranges from less than zero to more than 10.0%.

Our message is that uncertainty of this magnitude about risk premiums,
coupled with the uncertainty about risk loadings, implies woefully imprecise
estimates of the cost of equity.

We start with a brief discussion of the CAPM and the three-factor model
(Section 2). Section 3 explores variation through time in the CAPM and
three-factor risk loadings of industries. Sections 4 and 5 compare different ways
to estimate the loadings and the cost of equity. Section 6 examines uncertainty
about factor risk premiums. In Section 7 we present standard errors for CE
estimates that allow for uncertainty about both risk loadings and risk premiums.
Section & concludes.

2. The CAPM and the three-factor model

In the CAPM, the expected return on stock i or, equivalently, the cost of
equity for firm i is

E(R;) = R, + B:[E(Rw) — R], (1)
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where R; is the risk-free interest rate, E(Ry) is the expected return on the value-
weight market portfolio, and f§;, the CAPM risk of stock i, is the slope in the
regression of its excess return on the market’s excess return,

R; — R¢ = + B;[Ry — Re] + ¢;. (2)

Recent empirical work questions the adequacy of the CAPM as a model for
expected returns. Specifically, many papers argue that market beta does not

Table 1
Factor risk premiums for the CAPM and the three-factor model: 7/63-12/94

Ri— R =a;+b[Ry—R]+e; Ri—Ri=a+b[Ry—R]+5SMB+hHML+e

The returns here and in all following tables are in percents. R; is the one-month Treasury bill rate
observed at the beginning of the month. The explanatory returns Ry, SM B, and HM L are formed as
follows. At the end of June of each year t (1963-1994), NYSE, AMEX, and NASDAQ stocks are
allocated to two groups (small or big, S or B) based on whether their June market equity (ME, stock
price times shares outstanding) is below or above the median ME for NYSE stocks. NYSE, AMEX,
and NASDAQ stocks are allocated in an independent sort to three book-to-market-equity (BE/ME)
groups (low, medium, or high; L, M, or H) based on the breakpoints for the bottom 30%, middle
40%, and top 30% of the values of BE/ME for NYSE stocks. BE is the Compustat book value of
stockholders’ equity, plus balance sheet deferred taxes and investment tax credit (if available), plus
post-retirement benefit liability (if available), minus the book value of preferred stock. Depending on
availability, we use the redemption, liquidation, or par value (in that order) to estimate the book
value of preferred stock. The BE/ME ratio used to form portfolios in June of year ¢ is then book
common equity for the fiscal year ending in calendar year 1 — 1, divided by market equity at the end
of December of t — 1. Six size-BE/ME portfolios (S/L, /M, S/H, B/L, B/M, B/H) are defined as the
intersections of the two ME and the three BE/ME groups. Value-weight monthly returns on the
portfolios are calculated from July of year ¢ to the following June. SM B is the difference, each month,
between the average of the returns on the three small-stock portfolios (S/L, S/M, and S/H) and the
average of the returns on the three big-stock portfolios (B/L, B/M, and B/H). HML is the difference
between the average of the returns on the two high-BE/ME portfolios (S/H and B/H) and the
average of the returns on the two low-BE/ME portfolios (S/L and B/L). We do not use negative BE
firms, which are rare prior to 1980, when calculating the breakpoints for BE/ME or when forming
the six size-BE/ME portfolios. Also, only ordinary common equity (as classified by CRSP) is
included in the tests. This means that ADR’s, REIT’s, and units of beneficial interest are excluded.
The market return Ry, is the value-weight average of the returns on all stocks in the six size-BE/ME
portfolios, plus the negative BE stocks excluded from the portfolios. The sample size is 378 months.

Ry — R; SMB HML
Monthly
Average premium 043 0.27 0.45
Standard deviation (SD) 4.39 2.86 2.56
Standard error (SD/378%/%) 0.23 0.15 0.13
Annualized (12 times monthly)
Average premium 5.16 3.24 5.40

Standard error 271 1.77 1.58
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suffice to explain expected stock returns. (See Fama and French, 1992, and the
references therein.) Multifactor variants of Merton’s (1973) intertemporal asset
pricing model (ICAPM) or Ross’ (1976) arbitrage pricing theory (APT) seem to
give better descriptions of expected stock returns (e.g., Chen, Roll, and Ross,
1986; Fama and French, 1993, 1996).

Fama and French (1993) propose a three-factor model in which a security’s
expected return depends on the sensitivity of its return to the market return and
the returns on two portfolios meant to mimic additional risk factors. The
mimicking portfolios are SM B (small minus big), which is the difference between
the returns on a portfolio of small stocks and a portfolio of big stocks,and HML
(high minus low), the difference between the returns on a portfolio of high-book-
to-market-equity (BE/ME) stocks and a portfolio of low-BE/ME stocks. (See
Table 1.) The expected-return equation of the three-factor model is

where b;, s;, and h; are the slopes in the regression
R,—szal‘{"b,[RM“Rf] +S,SMB+h,HML+e, (4)

Using SM B to explain returns is in line with the evidence of Huberman and
Kandel (1987) that there is covariation in the returns on small stocks that is not
captured by the market return and is compensated in average return. Using
HML to explain returns is in line with the evidence of Chan and Chen (1991)
that there is return covariation related to relative distress (proxied here by
BE/ME, the ratio of the book value of a firm’s common stock to its market
value) that is missed by the market return and is compensated in average return.
Fama and French (1993, 1996) show that the three-factor model captures much
of the spread in the cross-section of average returns on portfolios formed on size,
BE/ME, and other variables (earnings/price, cash flow/price, and long-term past
return) known to cause problems for the CAPM.

3. Time-varying risk loadings

A manager using an asset pricing model to measure the discount rate for
a project must estimate the project’s sensitivities to the model’s risk factors.
Table 2 shows estimates of CAPM and three-factor risk loadings for 48 value-
weight industries. The industries are defined with the goal of having a manage-
able number of distinct industries that cover all NYSE, AMEX, and NASDAQ
stocks. (See Appendix A.) Because the sample of firms on Compustat is rather
limited in earlier years, the sample period is July 1963 to December 1994.

The full-period risk loadings in Table 2 seem to be estimated precisely. The
average standard error for the CAPM market slopes is only 0.04. The average
standard errors for the market, SMB, and HML slopes in the three-factor model
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Table 2
CAPM and three-factor industry regressions: 7/63-12/94

Ri—Ri=a;+b[Ru—R]+e, Ri—Ri=a;+b[Ru—R]~+siSMB+hHML +e¢,

The industries are defined in Appendix A. The monthly explanatory returns, Ry — Ry, SM B, and
HML, are described in Table 1. t(a) is the t-statistic for the regression intercept. The regression R?
are adjusted for degrees of freedom. Mean is the average across the 48 industries. The average
standard error of the Ry — R slopes in the CAPM regressions is 0.04. The average standard errors
of the Ry — Ry, SMB, and HML slopes in the three-factor regressions are 0.05, 0.07, and 0.07.

CAPM Three-factor

Industry a tl@ b R? a tl@ b s h R?

Drugs 0.23 1.29 092 0.59 0.61 388 0.84 —025 -—0.63 0.68
MedEq 0.11 0.57 1.17  0.67 0.39 224 099 026 —060 0.73
Hith 0.28 091 1.56 0.56 0.43 1.54 1.24 093 —0.59 0.66
Comps —0.11 —-055 1.04 0.59 0.13 0.66 0.90 0.17 —049 0.63
Chips 0.07 0.32 1.38  0.69 0.15 0.83 1.15 069 —039 077
BusSv 0.12 0.76 1.34 0.80 0.14 1.26 1.13 072 —-029 089
LabEq —-015 -091 .29 077 —-008 —0.56 113 049 —029 082
Hshld —-000 —002 097 072 0.14 1.04 091 000 —027 073
Meals 0.25 1.18 132 0.66 0.25 130 112 074 —024 074
Beer 0.37 212 092 0.59 0.51 290 090 —-013 —-022 0.60
PerSv —0.08 —035 1.25 059 —-016 —0.79 1.00 1.00 —-020 074
Cnstr —028 —1.50 128 070 —-027 —143 1.21 021 —-009 071
Rtail 0.07 048 .11 0.73 0.06 0.37 1.04 027 —-006 0.75
Fun 0.21 091 1.35  0.64 0.08 040 117 083 —-004 0.73
Food 0.32 236 087 0.68 0.35 251 088 —-007 —0.03 0.68
Agric —-0.07 -027 1.00 044 —-018 —-0.77 085 071 —-002 053
Mach —-011 -086 .16 082 —-015 -—122 1.11 025 —-000 0383
Books 0.12 073 117 071 0.04 026 1.08 0.45 0.00 0.75
Aero 0.03 014 126 068 —007 —-034 115 0.51 0.00 0.72
Coal 0.04 012 09 036 —-005 —-0.18 0.86 0.46 001 0.39
Guns 0.17 0.80 1.04 0.55 0.09 042 095 0.41 0.01 0.59
Whilsl —0.10 —0.81 1.1S 081 -024 —-289 101 0.71 001 092
Fin 0.19 1.14 1.16 0.72 0.12 0.75 1.11 0.30 002 074
ElcEq 0.06 042 1.15 Q.75 0.05 034 115 —-0.00 002 074
Boxes 0.13 0.78 1.03  0.65 0.09 0.51 099 0.17 002 0.66
BldMt —-001 -—0.09 1.13 083 —-006 —0.55 1.11 0.15 005 084
Insur 0.08 0.39 1.01  0.58 0.03 014 1.00 0.09 006 0.58
Gold 0.33 078 078 Q.15 0.21 0.50 071 040 008 0.16
Misc —-028 —1.00 126 050 —054 —231 1.03 1.19 0.08 0.67
Trans —-007 —-043 121 075 —-071 —109 1.16 0.30 009 0.77
Rubbr 0.05 037 121 078 —008 —0.61 1.12 0.49 009 0.3
FabPr —0.13 —-0.55 131 063 —-037 -—-216 1.11 1.10 009 0.80
Clths 0.08 0.39 124 066 —0.13 —-0.78 1.09 0.83 0.11 078
Chem —-002 -0.17 109 081 -—-010 —08S5 .13 —0.03 0.17 0381
Toys —0.01 —0.04 1.34 054 —-028 —1.11 1.17 0.97 0.17 0.65
Ships 0.17 0.61 1.19 050 —-0.05 —-0.18 1.09 0.66 0.17 0.56

Soda 0.30 132 124 060 0.13 055 1.19 0.44 0.18 0.63
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Table 2 (continued)

CAPM Three-factor

Industry a tla b R? a tl@ b s h R?

Enrgy 0.13 071 085 0.50 0.08 045 096 —035 021 054
Mines 0.30 1.24 098 045 0.08 034 091 0.53 023 0.50
Smoke 0.40 1.82  0.80 040 0.28 1.24 086 —0.04 024 041
Paper -005 -—-032 111 075 —-022 —154 114 0.16 027 0.77
Txtls 0.05 027 112 065 —-024 —150 103 0.71 030 0.76
Banks —-004 -026 109 076 —025 184 1.13 0.13 035 0.79
Telem 0.13 092 066 052 —-002 -—-011 079 -023 035 059
Util —000 —-002 066 055 —-017 —133 079 —-0.20 038 0.62
RIEst —058 —232 117 053 —101 —545 101 1.18 040 0.75
Steel —022 —-106 116 061 —-053 —264 117 0.40 043 0.67
Autos —~004 -021 101 05 —040 —209 1.10 0.17 0.60 0.63
Mean 0.05 025 111 063 —-003 -021 104 0.39 0.02 0.68

are 0.05, 0.07, and 0.07. These small standard errors are misleading, however,
because they assume the true slopes are constant. Industry risk loadings wander
through time, and estimates of period-by-period loadings are much less precise.

3.1. The implied volatility of true risk loadings

One way to document the temporal variation in risk loadings is with rolling
CAPM and three-factor regressions (estimated monthly using five years of past
returns). The idea is that, if the true CAPM and three-factor slopes for industries
vary through time, the time-series variation of the rolling-regression slopes
should exceed that implied by estimation error. Specifically, under the standard
assumption that the sampling error of a slope is uncorrelated with the true value
of the slope, the time-series variance of a rolling-regression slope is just the sum
of the variance of the true slope and the variance of the estimation error,

o*(Time Series) = a*(True) + o*(Estimation Error) . 5)

Table 3 reports estimates of o(True) for the market, SMB, and HML slopes in
five-year rolling CAPM and three-factor regressions. The estimates document
substantial temporal variation in the CAPM betas of industries. All but five of
the implied standard deviations of the true CAPM market slopes are greater
than zero, 28 are greater than 0.10, and nine are greater than 0.20. The average is
0.12. Thus, if the typical industry has a long-term average beta of 1.0, the
traditional two-standard-deviation rule of thumb suggests that its current true
beta might be anywhere between 0.76 and 1.24. If we use the average market
premium during our sample period, 5.16% per year, as the expected premium,
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Table 3
Implied standard deviations of true market, SMB, and HML slopes in five-year rolling CAPM and
three-factor regressions

Ri—Ri=a;+ b[Ry—R] + e, R,—Ri=a;+ b;[Ry — R{] + s;SMB + h, HML + ¢;

The industries are defined in Appendix A. Ry, — R¢, SM B, and HML are defined in Table 1. CAPM
and three-factor regressions are estimated each month of the 6/68 to 12/94 period, using a rolling
window of 60 prior monthly returns. The implied standard deviation of an industry’s true market,
SMB, or HML slope, 6(True), is the square root of the difference between the time-series variance of
the industry’s five-year slope estimates and the average of the estimation-error variances (squared
standard errors) of its five-year slope estimates,

6(True) = [6*(Time Series) — ¢*(Estimation Error)]'/%.

If the average estimation-error variance exceeds the time-series variance, 6 (True) is set to zero. Mean
is the average of (7T rue) across the 48 industries.

CAPM Three-factor

Industry b b s h

Drugs 0.088 0.101 0.141 0.262
MedEq 0.079 0.116 0.000 0.000
Hlth 0.251 0.148 0.000 0.181
Comps 0.000 0.000 0.038 0.277
Chips 0.025 0.051 0.030 0.314
BusSv 0.114 0.067 0.155 0.255
LabEq 0.043 0.063 0.000 0.169
Hshld 0.092 0.082 0.084 0.209
Meals 0.227 0.142 0.176 0.331
Beer 0.218 0.226 0.142 0.201
PerSv 0.120 0.000 0.382 0.104
Cnstr 0.098 0.031 0.332 0.293
Rtail 0.116 0.083 0.113 0.158
Fun 0.163 0.000 0.000 0.181
Food 0.104 0.042 0.226 0.245
Agric 0.248 0.133 0.038 0.000
Mach 0.000 0.000 0.201 0.155
Books 0.149 0.136 0.187 0.184
Aero 0.168 0.096 0.16t 0.229
Coal 0.172 0.140 0.373 0.000
Guns 0.131 0.069 0.255 0.325
Whis] 0.113 0.011 0.173 0.053
Fin 0.106 0.169 0.040 0.052
ElcEq 0.071 0.108 0.000 0.213
Boxes 0.084 0.069 0.077 0.190
BldMt 0.000 0.000 0.086 0.071
Insur 0.074 0.000 0.086 0.233
Gold 0415 0.425 0.090 0.000
Misc 0.250 0.120 0.084 0.152
Trans 0.078 0.023 0.148 0.118

Rubbr 0.080 0.042 0.144 0.102
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Table 3 (continued)

CAPM Three-factor

Industry b b s h

FabPr 0.253 0.124 0.179 0.211
Clths 0.144 0.131 0.135 0.290
Chem 0.041 0.000 0.000 0.154
Toys 0.082 0.079 0.321 0.144
Ships 0.114 0.000 0.000 0.313
Soda 0.215 0.186 0.272 0.000
Enrgy 0.180 0.156 0.171 0.365
Mines 0.170 0.129 0.211 0.000
Smoke 0.118 0.056 0.179 0.365
Paper 0.000 0.063 0.000 0.148
Txtls 0.000 0.076 0.088 0.137
Banks 0.121 0.093 0.126 0.126
Telem 0.138 0.162 0.197 0.000
Util 0.037 0.000 0.107 0.000
RIEst 0.274 0.091 0.136 0.206
Steel 0.021 0.000 0.201 0.148
Autos 0.106 0.135 0.196 0.314
Mean 0.123 0.087 0.135 0.170

the industry’s current cost of equity (in excess of the risk-free rate) might be
anywhere between 3.92% and 6.40% per year.

The industries’ true sensitivities to the market, size, and distress risks of the
three-factor model are also volatile. The average of the implied standard
deviations of the true SM B slopes is 0.14. Forty of 48 are positive, 29 are greater
than 0.10, and ten are greater than 0.20. Thus, many industries’ value-weight
returns behave like small-stock returns during some periods and like big-stock
returns in others. Similarly, 40 of the standard deviations of the true HM L slope
are positive, 37 are greater than 0.10, and 20 are greater than 0.20. The average is
0.17. In comparison, the standard deviation of the cross-section of the 48
full-period HML slopes in Table 2 is 0.27. Thus, the variation through time in
the true HML slopes of many industries is almost as large as the cross-sectional
standard deviation of the long-term average HML slopes of the 48 industries.

Table 3 suggests that the true market betas of the CAPM are more variable
than the true market slopes of the three-factor model. For 33 of 48 industries, the
implied standard deviation of the true CAPM market beta is higher than that of
the true three-factor market slope. The average 6(True) for beta falls from 0.12
in the CAPM regressions to 0.09 in the three-factor regressions. This is consis-
tent with the evidence that the SMB and HM L slopes in three-factor regressions
typically reduce the cross-sectional variation in market slopes. For example, the
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standard deviation of the 48 market slopes in Table 1 is 0.19 in the CAPM
regressions versus .13 in the three-factor regressions.

A note of caution. The population time-series variances of the rolling-regres-
sion slopes are well-defined if the true slopes are stationary (mean-reverting).
Permanent changes in the supply and demand conditions facing an industry
may, however, produce permanent changes in its risk loadings. If the true slopes
are not stationary, the implied standard deviations in Table 3 are still descriptive
evidence that the true slopes change through time. But comparisons of the
estimates across industries, and comparisons of the estimates for different risk
factors, may not be meaningful.

3.2. Conditional regressions

An alternative to the rolling regressions, both for documenting temporal
variation in risk loadings and for estimating an industry’s cost of equity at
a specific time, is to use instruments to track the wandering risks. Though size is
surely not a perfect proxy for sensitivity to SMB, we expect that an industry’s
SMB loading will increase if firms in the industry become smaller. We also
expect that if an industry becomes distressed, its book-to-market ratio and its
HML loading will increase. Thus, we try to track time-varying sensitivities to
SMB and HML with conditional regressions in which an industry’s SMB and
HML slopes vary with the average size and book-to-market-equity of firms in
the industry,’

Ri — Rf =a; + b,'[RM — R(] + [S,‘l + 82 ln(ME),]SMB
+ [his + hix In(BE/ME)JHML + ¢; . (6)

The estimates of (6) in Table 4 confirm that the loadings of industries on SM B
and HML wander through time. As predicted, SMB loadings fall when the
average size of firms in an industry increases; the In(ME);SMB slope, s;;,
is negative for all but seven of the 48 industries, and 20 of the s;, are more than
two standard errors below zero. As predicted, HML loadings are positively
related to the measure of relative distress, In(BE/ME);; all but one of the 48
In(BE/ME); HM L slopes are positive, and 31 are more than two standard errors
above zero.

Table 4 also reports the time-series standard deviations of the monthly
conditional loadings on SMB and HML. These standard deviations, estimated
as the absolute value of the conditional slope (s;; or h;;) multiphied by the
time-series standard deviation of the conditioning variable [In(ME); or
In(BE/ME);], are similar to the implied standard deviations of the true SMB and

'We thank Jay Shanken for suggesting this approach, which is like that in Shanken (1990).
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HML slopes in Table 3. The correlation between the two estimates of the
volatility of an industry’s sensitivity is 0.51 for the SMB slopes and 0.63 for the
HML slopes. Moreover, the averages of the standard deviations of the condi-
tional loadings in Table 4 (0.13 for SMB and 0.17 for HML) are almost identical
to the averages of the implied standard deviations in Table 3 (0.14 and 0.17).
Thus, the conditional regressions track meaningful variation in industry load-
ings on SMB and HML, and the magnitude of this variation is similar to that
inferred from the rolling regressions.

4. Estimating CAPM and three-factor risk loadings for industries

Tables 3 and 4 say that, for many industries, true sensitivities to CAPM and
three-factor risks are quite volatile. Moreover, the variation in true risk load-
ings, and the implied variation in the cost of equity, are surely larger for
individual firms. Appendix B explores the effects of time-varying risk loadings
on tests of asset pricing models. Here we ask how a manager who is trying to
measure the cost of equity should estimate wandering loadings.

For near-term cash flows, the manager wants a current CE and thus current
true risk loadings. Conditional or rolling regressions, designed to track wander-
ing risk loadings, are likely candidates. The answer for more distant cash flows
depends on the behavior of the true risk loadings. If the true loadings are mean-
reverting, full-period constant-slope regressions like those in Table 2 are prob-
ably best. At the other extreme, if the true risk loadings follow a random walk,
current loadings are the best forecasts of all future loadings, and conditional or
rolling regressions may be better than full-period constant-slope regressions.

We compare three approaches to estimating risk loadings for near-term and
long-term CE’s: (i) full-period estimates of the CAPM and three-factor regres-
sions (2) and (4); (i) three-, four-, and five-year rolling estimates of (2) and (4);
and (iii) full-period estimates of the conditional regression (6). We evaluate the
precision of the competing risk loadings, for the purpose of estimating near-term
and long-term CE’s, by examining their ability to explain industry returns next
month and at more distant horizons. The idea is that more precise loadings will
produce less disperse forecast errors (Gonedes, 1973).

4.1. One-month forecasts

Part A of Table 5 compares the in-sample fits of the full-period, constant-
slope, and conditional regressions for July 1968 to December 1994. The results
confirm that the conditioning variables improve the fit of the three-factor
regressions. Adding In(ME)SMB and In(BE/ME)HML to the full-period con-
stant-slope regressions raises the average R* (across industries) from 0.70 to 0.71.
The average mean absolute unexplained return, M 4, falls from 2.72% in the
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Table 5
Comparisons of techniques for estimating risk loadings

Part A. Ry — R, SMB, and HML are defined in Table 1; In(ME) and In(BE/ME) are defined in
Table 4. M A is the mean absolute value of the sum of the intercept and the residuals from an
industry regression; é(e) is the standard error of the residuals. R%, M A, and 6(e) are adjusted for
degrees of freedom. The ¢-statistics are ratios of coefficients to their standard errors, except for the
market slope b where the test is that the true slope is one. The statistics shown are averages across
industries.

Part B. The one-factor and three-factor regressions are estimated for each industry for each month
beginning in 6/68, using a rolling window of three, four, or five years of past monthly returns. The
in-sample regression coefficients, and the values of the explanatory variables for the month following
the in-sample period, are used to make conditional out-of-sample forecasts of industry returns. The
table shows averages, across industries, of the mean (M), mean absolute (M A), and the standard
deviation (&(e)) of the out-of-sample forecast errors for different methods of estimating the in-sample
regressions. In the first three columns (OLS, intercept), the forecasts use simple OLS regression
coefficients. In the second three columns (OLS, no intercept), the OLS intercept is dropped in the
forecasts. In the next three columns (shrunk, no intercept), the forecasts use regression slopes that are
shrunk to correct for sampling error. The Bayes shrinkage method is described in Appendix C.

Part A: Full-period constant-slope and conditional regressions: Coefficients, t-statistics (in paren-
theses), and summary statistics, averaged across 48 industries, 7/68-12/94

R, — R; = a; + b;[Ry — R(] + [5:1 + sian(ME);] SMB + [y + hi;In(BE/ME)] HML + ¢,

b 1 53 hy hy R? a MA é(e)

1.11 0.64 —-0.02 296 3.83
(2.35) (—0.07)

1.04 0.38 0.01 0.70 -004 272 3.50
(0.92) (5.35) ©0.15) (—0.24)

1.03 0.21 —-0.25 —0.03 0.68 0.71 —0.04 268 343
0.81) (225) (—159 (-008) (2.56) (—021)

Part B: One-month-ahead forecast errors from rolling regressions, averaged across 48 industries,
7/68-12/94

OLS
Shrunk,

Intercept No intercept no intercept

M MA  é(e) M MA  G(e) M MA  é(e)
Ri—Ri=a; + bRy — R(] + ¢
3-year rolling —002 300 394 002 297 387 002 295 384
4-year rolling —005 29 392 000 297 387 000 295 385
S-year rolling —005 298 390 000 296 386 000 296 385
Ri — Ry =a; + bRy — Re] + 5;SMB + h; HML + ¢
3-year rolling —-000 281 367 —-004 278 362 —-004 272 352
4-year rolling —-0.00 279 363 -003 277 359 —-004 272 352

5-year rolling 000 276 3.60 —-003 275 357 -003 272 352
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constant-slope regressions to 2.68% in the conditional regressions. The average
residual standard deviation, (e), drops from 3.50% to 3.43%. These improve-
ments are small, but they are consistent. The conditional M A4 is lower than the
constant-slope M A for 35 of 48 industries; the conditional d(e) is lower than the
constant-slope d(e) for 39 industries.

In-sample regression fits (not shown) suggest that rolling-regression estimates
of risk loadings are a bit better than full-period or conditional estimates. For the
19681994 period, the average of the adjusted R? for rolling CAPM regressions
estimated monthly with five years of returns is 0.65 versus 0.64 for full-period
estimates. Similarly, the average R? for rolling five-year three-factor regressions,
0.72, is slightly higher than the averages for the full-period, constant-slope, or
conditional regressions, 0.70 and 0.71. Because the true CAPM and three-factor
slopes vary through time, however, in-sample fits probably exaggerate the
precision of the rolling regressions for our problem — estimating risk loadings for
future CE’s. For this purpose, out-of-sample forecast errors give better perspec-
tive on the precision of rolling-regression slopes.

We start with one-month forecasts. To construct them, we estimate CAPM
and three-factor regressions each month for each industry using rolling windows
of three, four, and five years of past returns. We then use the in-sample
regression coefficients and next month’s (out-of-sample) explanatory returns to
generate out-of-sample forecasts. Because the slope estimates from the rolling
regressions are so imprecise, we add a Bayesian wrinkle. More extreme estimates
are likely to have more error, so in principle we can improve the rolling-
regression slopes by shrinking them toward a grand mean. We use the Bayes
shrinkage method of Blattberg and George (1991). The details are in Appendix C.

We consider several versions of the rolling regressions to judge (i) whether
out-of-sample forecasts improve when estimation-period intercepts are drop-
ped, (i) whether Bayes shrinkage of the slopes helps, (iii) whether three-factor
regressions forecast better than one-factor regressions, and (iv) whether longer
estimation periods improve the out-of-sample forecasts. On the first three
questions, the results in part B of Table 5 are clear, but not always overwhelm-
ing. (i) In every case, and for both the one-factor and three-factor regressions,
suppressing estimation-period intercepts (and so imposing CAPM or three-
factor asset pricing) produces forecast errors with less dispersion. The improve-
ments, however, are small (1%-2%). (ii) If we suppress the intercepts, the least
disperse forecast errors are obtained when the regression slopes are shrunk to
correct for estimation error. But again, the improvements are small. (ii1) In every
comparison, three-factor regressions produce less disperse forecast errors than
one-factor regressions. Here the improvements are larger; the averages of the
mean absolute and standard deviations of the one-factor forecast errors are
about 10% greater than those of the three-factor regressions.

The one-month forecasts are clean evidence that the three-factor rolling
regressions capture return variation missed by the one-factor regressions. The
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asset pricing evidence from the rolling regressions is, however, weak. In particu-
lar, the fact that out-of-sample forecast errors are less disperse when the
regression intercepts (one-factor or three-factor) are dropped is not much
evidence that the true intercepts are zero. The average standard errors of the
intercepts in the in-sample regressions are large (for example, 0.46 for the
five-year three-factor regressions). If the true intercepts are small relative to their
estimation errors, suppressing the intercepts is likely to improve the out-of-
sample forecasts.

The most important result from the rolling regressions is that, for both the
CAPM and the three-factor model, forecast quality is insensitive to the length of
the regression estimation period. Focusing on the shrunk-no-intercept regres-
sions, which produce the best forecasts, the averages of the mean absolute and
standard deviations of the forecast errors are remarkably similar for three-,
four-, and five-year estimation periods. Six- to ten-year estimation periods (not
shown) produce forecast errors like those of three- to five-year estimation
periods. In fact, Table 5 suggests that the forecast power of the regressions does
not change if we lengthen the estimation period to the full sample. The averages
of M A and é(e) for the rolling three-factor regressions, 2.72 and 3.52, are almost
identical to those for the full-period constant-slope regressions, 2.72 and 3.50.
Similarly, the average M A for the full-period CAPM regressions (2.96) basically
matches the rolling-regression estimates (2.95 and 2.96), while the average d(e)
for the full-period regressions (3.83) is slightly lower than the rolling-regression
estimates (3.84 and 3.85).

The bottom line for the CAPM is that, on average, full-period estimates of
current industry betas are no better or worse than estimates from three-, four-,
and five-year rolling regressions. The insensitivity of forecast quality to the
regression estimation period says that noise in the forecasts, caused by increased
smoothing of variation in the true betas, just about offsets the increase in
precision obtained by extending the estimation period. These results for indus-
tries are like those in Gonedes (1973) for individual firms.

The implications of Table 5 for estimates of current three-factor risk loadings
are similar. For the typical industry, estimates of three-factor loadings from
full-period constant-slope regressions produce forecasts of returns one month
ahead that are as accurate as those from rolling regressions, and only slightly
less accurate than the forecasts from conditional regressions. The next section
asks which approach is best for estimating risk loadings for longer horizons.

4.2. Forecasts for distant horizons

Table 6 examines forecasts of monthly returns up to five years ahead. For the
CAPM, the table shows that rolling-regression market slopes are about as good
as full-period slopes for forecasts one month ahead, but the full-period slopes
dominate at longer forecast horizons. This suggests that the typical industry’s
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CAPM beta is mean-reverting. The rolling regressions track risk loadings that
wander through time. If an industry’s true beta is mean-reverting, deviations
from the long-term mean are temporary, and estimates from the full-period
constant-slope regressions provide better estimates of distant betas. Since, on
average, the full-period estimates are as good as the rolling-regression estimates
at short horizons, the prescription for the CAPM is simple. Full-period market
slopes are typically good choices for estimating CAPM betas and CE’s for all
future periods.

Table 6
Summary statistics for forecast errors from conditional and rolling regressions and for residuals
from full-period constant-slope regressions

Ry — Ry, SMB, and HML are defined in Table 1; In(ME) and In(BE/ME) are defined in Table 4. The
conditional regression forecasts for month t + i (i = 1, 12, 24, 36, 48, and 60) combine slopes (b, s,
85, hy, and h,) estimated from 7/68 to 12/94 with values of In(ME) and In(BE/ME) for month ¢, and
explanatory returns (Ry — Rg, SMB, and HM L) for month ¢ + i. The rolling-regression forecasts for
month ¢ + i use the slopes for months ¢ — n (n = 36, 48, and 60) to t and market, SMB, and HML
returns for month ¢ + i. The slopes in the rolling regressions are shrunk using the Bayes shrinkage
method in Appendix C. The one-month-ahead results for the conditional and rolling regressions
summarize monthly forecast errors for 7/68 to 12/94. The one-year-ahead results summarize
monthly forecast errors for 6/69 to 12/94, and the five-year-ahead results are for 6/73 to 12/94. The
full-period constant-slope regression results summarize residuals from regressions estimated over
the same periods as the conditional and rolling-regression forecast errors. For example, the
summary statistics in the one-year column describe the residuals from constant-slope regressions
estimated using monthly observations for 6/69 to 12/94. Since they summarize regression residuals,
we adjust for degrees of freedom when calculating the mean absolute and standard deviation
measures for the constant-slope regressions and for the one-month-ahead conditional regressions.
The results are averages across the 48 industries.

One-factor regressions: R; — R; = a; + b;[Ry — R¢] +¢;

Forecast horizon

1 month 1 year 2 years 3 years 4 years S5 years

Average mean absolute forecast error (or residual plus intercept)

3-year rolling 2.95 2,99 299 299 3.02 3.02
4-year rolling 2.95 2.98 298 299 3.01 3.02
S-year rolling 2.96 2.98 299 2.99 3.01 3.02
Full period 296 297 296 295 297 297

Average standard deviation of forecast errors (or residuals)

3-year rolling 3.84 3.89 3.88 3.89 392 393
4-year rolling 3.85 3.87 3.88 3.89 392 3.93
S-year rolling 3.85 3.88 3.89 3.88 391 3.93

Full period 3.83 384 3.83 3.82 3.84 3.84
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Table 6 (continued)

Three-factor regressions
Rolling and full-period constant-slope: R; — Ry = a; + b;[Ry — R;] + 5; SMB + h; HML + ¢;
Conditional: R; — Ry = a; + b;[Ry — R¢] + [5:1 + si2In(ME);JSMB

+ [h;, + hzIn(BE/ME)JHML +e¢;

Forecast horizon

1 month 1 year 2 years 3 years 4 years 5 years

Average mean absolute forecast error (or residual plus intercept)

Conditional 2.68 2.67 2.7 2.72 2.74 2.77
3-year rolling 2.72 2.78 2.80 2.84 2.86 2.89
4-year rolling 272 2.77 2.80 2.83 2.85 2.89
5-year rolling 2.72 2.77 2.80 2.82 2.85 2.88
Full period 272 273 2.74 2.74 2.75 277

Average standard deviation of forecast error (or residual)

Conditional 343 3.45 349 3.50 3.53 3.58
3-year rolling 3.52 3.60 3.64 3.68 3.72 3.75
4-year rolling 3.52 3.59 3.64 3.67 3.70 3.74
S-year rolling 3.52 3.59 3.63 3.66 3.69 3.73
Full period 3.50 3.50 3.50 3.51 3.52 3.54

The three-factor regression results in Table 6 also suggest some mean rever-
sion in industry loadings on Ry — Ry, SM B, and HM L. The performance of the
conditional and rolling three-factor regressions deteriorates for forecasts further
into the future. Since the quality of the full-period constant-slope forecasts
also falls a bit, part of the deterioration of the conditional- and rolling-
regression forecasts occurs simply because the sample months differ across
forecast horizons. But the full-period constant-siope forecasts do not deteriorate
as much as the conditional- and rolling-regression forecasts, which suggests
some mean reversion in risk loadings. Consistent with this conclusion, beyond
two years the forecasts from the full-period constant-slope regressions are about
as good as (but no better than) those from the conditional regressions (which are
always a bit better than the forecasts from the rolling regressions).

Table 6 also suggests, however, that reversion to constant means is not
a universal property of industry three-factor risk loadings. With true mean
reversion, the constant-slope regressions should provide better forecasts than
the conditional regressions at distant horizons. At least for horizons out to five
years, they do not. A likely explanation is that the conditional three-factor
regressions capture some permanent changes in risk loadings that are missed by
the full-period constant-slope regressions.
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4.3. Complications

The message from Tables 5 and 6 about the choice of betas to be used in
estimates of CAPM costs of equity (CE’s) is relatively simple. For the typical
industry, the full-period market slope is a good choice for estimating both
near-term and distant betas. (We leave open, of course, the possibility that for
some industries shifting demand and supply conditions produce nonstationarity
in true betas that would favor the rolling regressions for estimates of both
near-term and distant CE’s.)

The implications of Tables 5 and 6 for estimating three-factor CE’s are more
complicated. The tables suggest that for the typical industry the time-varying
slopes from the conditional three-factor regression (6) should be used to estimate
three-factor CE’s for near horizons (up to two years). At longer horizons,
estimates from the constant-slope regression (4) are as precise as those from the
conditional regression. Statistical or economic evidence of mean reversion in an
industry’s three-factor slopes would push the choice for longer horizons toward
constant-slope estimates. Evidence of permanent shifts in demand or supply
conditions that produce nonstationarity in true three-factor slopes would favor
the conditional (or rolling) regressions for estimates of both near-term and
distant CE’s.

Even for near horizons other considerations might make three-factor CE’s
from full-period constant-slope regressions better than conditional estimates.
Table 6 says that, for forecasts one month ahead, the full-period constant-slope
regressions are only a bit worse than the conditional regressions. This suggests that
using full-period constant-slope CE’s to value near-term cash flows will not produce
substantially less precise estimates of value than conditional-regression CE’s. More-
over, spurious variability in conditional CE’s can create startup and shutdown
costs that are avoided with estimates from full-period constant-slope regres-
sions. Such costs favor full-period constant-slope CE’s over conditional CE’s.

The conditional regressions have another weakness if used at the firm level.
Managers have at least partial control of a firm’s size (M E) and book-to-market-
equity (BE/ME). If a firm uses a conditional regression to track its wandering
risk loadings, management could change the estimated cost of equity by chang-
ing the firm’s ME or BE/ME. Such gaming of the conditional regression would
create more noise in CE estimates and bias the projects that are accepted. To
avoid such problems, firms might be better off using full-period constant-slope
CE’s for capital budgeting.

5. Industry costs of equity

Tables 5 and 6 do not identify clear winners among alternative slope esti-
mates for CAPM and three-factor CE’s. For long horizons, CAPM betas from
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full-period regressions produce return forecasts that are a bit more accurate
than those from rolling regressions, but for all horizons the advantages of one
approach over the other are small. Similarly, for near horizons, three-factor
conditional regressions produce slightly more accurate return forecasts than
full-period constant-slope regressions, but the differences between the two
approaches, and their advantages over rolling regressions, are always small.
Although the statistical evidence from the forecasts does not clearly identify the
best approach to estimating risk loadings, we show next that the choice is of
some consequence. Competing approaches often produce much different CE’s,
especially for the three-factor model.

5.1. Comparisons of alternative CAPM and three-factor CE’s

Table 7 shows two estimates of the risk premiums (expected returns in excess
of the risk-free rate) in CAPM CE’s and three estimates of the risk premiums in
three-factor CE’s for each of the 48 industries. Two estimates use the slopes from
the full-period constant-slope CAPM and three-factor regressions, (2) and (4).
Two CE’s use shrunk CAPM and three-factor slopes estimated on the five years
of monthly returns ending in December 1994. The fifth estimate combines slopes
from the conditional regression (6) with values of the conditioning variables,
In(ME) and In(BE/ME), for December 1994.

For the CAPM, most of the differences between the CE’s from the full-period
constant-slope regressions and the end-of-period rolling regressions are modest.
The two CAPM CE’s differ by more than 1% per year for only 11 of 48
industries; the two CE’s never differ by more than 2%. Differences among
the alternative three-factor CE’s tend to be larger. The full-period estimate
from the constant-slope regression (4) and the end-of-period estimate from the
conditional regression (6) differ by more than 1% per year for 25 of 48 industries
and by more than 2% for eight industries. Thus, for many industries, the
essentially arbitrary choice between constant-slope and conditional-regression
three-factor CE’s can lead to substantially different valuations of investment
projects.

The differences in three-factor CE’s are driven by differences in the estimates
of SMB and HML slopes. Health Care, Personal Services, and Gold are
examples. Their end-of-sample values of In(ME) are below their full-period
averages. As a result, their conditional SM B slopes for December 1994 are above
the estimates from full-period constant-slope regressions, and their conditional
CE’s are above their constant-slope CE’s. Computers, Machinery, and Coal
illustrate the opposite case. Firms in these industries are relatively large in
December 1994, their conditional SM B slopes are below their full-period slopes,
and their conditional three-factor CE’s are below their full-period CE’s.

For many industries, the conditional SMB and HML slopes for December
1994 both differ a lot from their full-period counterparts. Business Services and
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Construction are extreme examples. The December 1994 slopes on SMB
and HML from the conditional regression for Business Services (0.26 and
— 0.43) are much lower than the full-period slopes (0.72 and — 0.29), so the
conditional three-factor CE (4.21%) is much lower than the constant-slope CE
(6.51%). Similarly, the December 1994 conditional SMB and HML slopes for
Construction (0.77 and 0.17) are much higher than the full-period slopes (0.21
and — 0.09), so the December 1994 conditional CE (9.69%) is much higher than
the full-period CE (6.42%).

Finally, there are also large differences between the three-factor CE’s for
December 1994 from the conditional and five-year rolling regressions. The
estimates differ by more than 1% per year for 27 industries and by more
than 2% for 13 industries. For Drugs, Medical Equipment, Fabricated
Products, Shipping, and Autos, the conditional and rolling-regression CE’s for
December 1994 differ by more than 3%. The forecast tests in Tables 5 and
6 suggest that the conditional regressions provide slightly more precise estimates
of near-term CE’s than the rolling regressions, but there is much uncertainty
about which is better. Unfortunately, Table 7 says the choice can have large
consequences.

5.2. CAPM and three-factor CE'’s

As one might expect, there are also large differences between CAPM and
three-factor CE’s. The full-period CAPM and three-factor CE’s differ by more
than 2% for 17 industries and by more than 3% for eight industries. The five-
year CAPM and three-factor CE’s differ by more than 2% for 19 industries and
by more than 3% for 15 industries. For many industries, the choice of a CAPM
or three-factor cost of equity will have a large impact on the valuation of
investments.

The differences between the three-factor and CAPM CE’s are largely deter-
mined by the SMB and HML slopes in the three-factor regressions. Some
industries have SM B and HML slopes close to zero, so their CAPM and three-
factor CE’s are similar. Focusing on the full-period constant-slope regressions,
this group includes Food, Machinery, Electrical Equipment, Boxes, Building
Materials, and Insurance. Other industries have similar full-period CAPM and
three-factor CE’s because their SMB and HML slopes offset. This group
includes Business Services, Meals (Restaurant Services), Construction, and
Retailers.

More numerous and interesting are the industries for which three-factor and
CAPM CEs differ a lot. For example, the health industries (Health Services,
Medical Equipment, and Drugs) and the high-tech industries (Computers,
Chips, and Laboratory Equipment) have lower full-period three-factor CE’s,
largely due to strong negative loadings on HML. The three-factor model
identifies these as industries with strong growth prospects during the sample
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period and rewards them with three-factor costs of equity that are lower
than their CAPM CE’s. On the other hand, many industries have full-period
three-factor CE’s that are at least 2% higher than their CAPM CE’s. Mining,
Textiles, Banking, Real Estate, Steel, and Autos are examples. The three-factor
model assigns high costs of equity to these industries because their returns
covary with the returns on small stocks (they have large positive slopes on SM B)
and because they behave like distressed stocks (they have large positive slopes
on HML).

Finally, there is more cross-industry variation in three-factor CE’s than in
CAPM CE’s. For example, the range of the full-period three-factor estimates,
0.09% to 11.16%, dwarfs that of the full-period CAPM estimates, 3.39% to
7.95%. Part of the dispersion of the three-factor CE’s is caused by estimation
error in SMB and HML slopes. For the purpose of estimating an industry’s
average CE over the sample period, however, the full-period SMB and HML
slopes are rather precise; their average standard errors are 0.07. Thus, much of
the higher dispersion of the three-factor CE’s reflects true differences in the risk
loadings of the two asset pricing models.

6. Estimating factor risk premiums

Imprecise risk loadings imply economically important uncertainty about
CE’s. But the risk loadings are in fact a small part of the CE estimation problem.
Uncertainty about the market, SMB, and HML premiums in the CAPM and
the three-factor model is more important.

The CE’s in Table 7 estimate the annual factor risk premiums by annualizing
the average monthly premiums for July 1963 to December 1994 in Table 1. The
annualized standard errors (12 times the monthly standard errors) of the market,
SMB, and HML premiums are 2.71%, 1.77%, and 1.58%. These large standard
errors are, of course, examples of the general imprecision of estimates of
expected stock returns (Merton, 1980). They imply that, even if we knew true
risk loadings, estimates of CAPM and three-factor CE’s would be unavoidably
imprecise.

For example, the annualized average market premium for 1963-1994 is 5.16%
per year. The standard error of the premium, 2.71%, implies that the one-
standard-error bounds on the CAPM CE of a project known to have a true beta
equal to 1.0 are 2.45% to 7.87% per year. The two-standard-error bounds are

— 0.26% to 10.58%. These estimates clearly imply extreme imprecision in the
values assigned to investment projects.

At the risk of beating a horse already dead, there is another problem in
estimates of factor risk premiums. There is evidence that the expected market
premium, E(Ry) — Ry, varies through time. (See Fama and French, 1989, and the
references therein.) Predictable variation in E(Ry) — R, and in the expected
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SMB and HML returns® should in principle be incorporated in CE estimates
(Brennan, 1995). There is, however, much controversy about the extent of the
variation in the expected market premium, due (once again) to the imprecision
of the relevant parameter estimates. As a result, the evidence is consistent with
a wide range of estimates of the time variation in the expected premium. Again,
different estimates can produce big differences in estimated CE’s and in the
values assigned to investment projects.

7. Standard errors for CE estimates

Though the preceding discussion gives strong clues, it is interesting to exam-
ine more formally how uncertainty about risk loadings combines with uncer-
tainty about factor risk premiums to determine the overall imprecision of CE
estimates.

The error in the estimate of an industry’s CAPM CE is

e(CAPM CE) = b Ry — R; — bE(Ry — Ry)
= (b + uy) [E(Ry — Ry) + um] — DE(Ry — Ry)
=u, E(Ry — Ry) + umb + upuy,

where Ry — R is the estimated market premium, uy is the error in this estimate,
b is the estimated market slope, and u, is the error in the slope. If the joint
distribution of security returns is multivariate normal, uy and u, are uncor-
related, and the standard error of the CE is

se(CAPM CE) = [E(Ry — Ry)*var(uy) + b?var(uy)
+ var(uy) var(uw)]*’? . 7

Similarly, the standard error of a three-factor CE depends on the covariance
matrix of the estimation errors of the factor loadings and the covariance matrix
of the factor risk premiums. (See Table 8.)

Table 8 reports averages (across industries) of the standard errors of CAPM
and three-factor CE’s under a variety of assumptions about the precision of
estimates of factor risk loadings and risk premiums. At one extreme, the table
shows that if there is no uncertainty about the market premium, and if the
CAPM betas of industries are constant, then estimates of CAPM CE’s are
precise. In particular, using the full-period CAPM betas and ignoring uncertain-
ty about the market premium, the average standard error of CAPM industry

2Without showing the details, we can report that SMB and especially HML seem less predictable
than the market premium, at least with dividend yields and the common interest rate variables that
seem to forecast the market premium.
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Table 8
Averages across industries of standard errors of CAPM and three-factor CE’s

The standard error for an industry’s CAPM CE is
se(CAPM CE) = [(Ru — R¢)? var(us) + b? var(uy) + var(uy) var(un)]'/?,

where Ry — R, is the annualized average market premium for 7/63 to 12/94, var(uy) is the
annualized variance of the average market premium, b is the market slope from the industry’s
full-period CAPM regression, and var(u,) is the variance of the error of the slope. The standard error
for a three-factor CE is

se(3-factor CE) = [Prem’ var(u,) Prem + 7' var(upyem) 7 + I' [Var(upyem) [CIvar(u,)12 1'%,

where Prem = [Ry — Ry SMB HML] is a vector of the annualized average market, SMB, and
HML premiums for 7/63 to 12/94, var(up,.,,) is the annualized covariance matrix of the premiums,
v is the vector of the market, SMB, and HML slopes from the industry’s full-period regression,
var(u,) is the covariance matrix of the sampling errors in the slopes, / is a vector of I’s, and
a O b means each element of a is multiplied by the corresponding element of b.

We consider two measures of var(uy) or var(up,.,). The first (rows 1 and 2) assumes the expected
premiums are measured perfectly, so var(uy) and var(up,.,,) are zero. The second (rows 3-5) uses the
variance or the covariance matrix of the historical average premiums. We also consider three
estimators of var(u,) or var(u,) for each industry. The first (row 3) assumes the slopes are measured
perfectly, so var(u,) and var(u,) are zero. The second (rows 1 and 4) uses the variance of beta, or the
covariance matrix of the slopes, from full-period regressions. The third (rows 2 and 5) uses the
average variance of beta, or the average covariance matrix of the slopes, from each industry’s
three-year rolling CAPM or three-factor regressions.

CAPM Three-factor

No error in risk premiums

Covariance matrix of slopes from:

(1) Full-period regressions 0.23 0.54

(2) Rolling 3-year regressions 0.78 1.99

Risk premiums estimated with error

(3) No error in slopes 3.01 3.17
Covariance matrix of slopes from:

(4) Full-period regressions 3.03 3.23

(5) Rolling 3-year regressions 315 3.85

CFE’s is only 0.23% per year. Still ignoring uncertainty about the market
premium, but using three-year rolling regressions to allow for time-varying true
betas, the average standard error of CAPM CE’s rises from 0.23% to 0.78%
per year. Even if the market premium is known, wandering betas in themselves
produce substantial uncertainty about CE’s, and thus about estimates of
project values.
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Uncertainty about CAPM CFE’s due to imprecise beta estimates is, however,
small relative to the problem caused by the imprecision of the market risk
premium. Table 8 shows that if we treat industry betas as known constants, the
estimation error of the market premium in itself produces standard errors of
CAPM CE’s that average a whopping 3.01% per year. [The average industry
beta in (7) is greater than one.] Moreover, given the uncertainty about the
market premium, the marginal effect of beta uncertainty is small. Using the
three-year rolling regressions to allow for uncertainty about beta due to estima-
tion error and time-varying true betas only raises the average standard error of
the CAPM CE’s from 3.01% to 3.15%.

Since the imprecision of CAPM CE’s is largely due to uncertainty about the
market premium, all the industry CE’s have large standard errors. When the
full-period regressions are used to measure beta uncertainty, the standard errors
of the CAPM CE’s for 29 of 48 industries (not shown) are above 3.0%. When the
rolling three-year regressions are used, 31 industries have CAPM standard
errors above 3.0% per year.

Table 8 shows that uncertainty about risk loadings is somewhat more impor-
tant in the imprecision of three-factor CE’s. Again, however, uncertainty about
factor risk premiums in itself creates massive uncertainty about three-factor
CE’s, and thus about project values. When we only allow for the imprecision of
the premiums, the average standard error of the three-factor industry CE’s is
huge, 3.17% per year. When we use the three-year rolling-regression slopes to
also allow for uncertainty about risk loadings, the average standard error of the
three-factor CE’s rises to 3.85% per year. Thus, given the uncertainty about
factor risk premiums, the marginal effect of uncertainty about risk loadings 1s
again relatively small.

8. Conclusions

Estimates of the cost of equity are distressingly imprecise. Standard errors of
more than 3.0% per year are typical when we use the CAPM or the three-factor
model to estimate industry CE’s. These large standard errors are driven pri-
marily by uncertainty about true factor risk premiums, with some help from
imprecise estimates of period-by-period risk loadings. Since the risk loadings for
individual firms or projects are less precise than those of industries, the standard
errors of CE’s for firms or projects are even larger.

Uncertainty about the true asset pricing model adds further to the uncertainty
about project values. For example, though they share the same estimate of the
market risk premium, the CAPM and three-factor CE’s of many industries differ
by more than 2.0% per year. And denominator uncertainty is, of course, only
half of the project valuation problem. Uncertainty about the cashflow estimates
in the numerator also creates first-order imprecision in estimates of project values.
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Project valuation is central to the success of any firm. Our message is that the
task 1s beset with massive uncertainty. The question then is whether there is an
approach that values projects with less error than its competitors. Is the net-
present-value approach, advocated with zeal by textbooks, typically more
accurate than a less complicated approach, like payback? And how would one
tell? Our guess is that whatever the formal approach two of the ubiquitous tools
in capital budgeting are a wing and a prayer, and serendipity is an important
force in outcomes.

Appendix A

We use four-digit SIC codes to assign firms to 48 industries. The industries
(short name, long name, and SIC codes) are:

Agric Agriculture 01000799, 20482048

Food Food Products 2000-2046, 2050-2063, 2070-2079,
2090-2095, 2098-2099

Soda Candy and Soda 2064-2068, 20862087, 2096-2097

Beer Alcoholic Beverages 2080-2085

Smoke Tobacco Products 2100-2199

Toys Recreational Products 09000999, 3650-3652, 3732-3732,
3930-3949

Fun Entertainment 78007841, 7900-7999

Books  Printing and Publishing 2700-2749, 2770-2799

Hshld  Consumer Goods 2047-2047, 2391-2392, 2510-2519,

2590-2599, 2840-2844, 3160-3199,
3229-3231, 3260-3260, 3262-3263,
3269-3269, 3630-3639, 3750-3751,
3800-3800, 38603879, 3910-3919,
3960-3961, 3991-3991, 3995-3995

Clths Apparel 2300--2390, 3020-3021, 3100-3111,
3130-3159, 3965-3965

Hith Healthcare 8000-8099

MedEq Medical Equipment 3693-3693, 38403851

Drugs  Pharmaceutical Products 2830-2836

Chems Chemicals 2800-2829, 28502899

Rubbr  Rubber and Plastic Products 3000-3000, 3050-3099

Txtls Textiles 2200-2295, 2297-2299, 2393-2395,
2397-2399

BldMt Construction Materials 0800-0899, 2400-2439, 2450-2459,

2490-2499, 2950-2952, 3200-3219,
3240-3259, 3261-3261, 3264-3264,
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Cnstr
Steel
FabPr
Mach
ElcEq

Misc

Autos

Aero
Ships
Guns
Gold
Mines
Coal
Enrgy
Util
Telem
PerSv

BusSv

Comps
Chips

LabEq
Paper

Boxes

Trans
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Construction

Steel Works, Etc.
Fabricated Products
Machinery

Electrical Equipment

Miscellaneous

Automobiles and Trucks

Aircraft

Shipbuilding, Railroad Eq
Defense

Precious Metals
Nonmetallic Mining

Coal

Petroleum and Natural Gas
Utilities
Telecommunications
Personal Services

Business Services

Computers

Electronic Equipment

Measuring and Control Equip

Business Supplies
Shipping Containers

Transportation

32703299, 3420-3442, 34463452,
3490-3499, 3996-3996

1500-1549, 1600—1699, 1700—1799
3300-3369, 3390-3399

3400-3400, 34433444, 34603479
3510-3536, 3540-3569, 3580-3599
3600-3621, 3623-3629, 36403646,
3648-3649, 3660-3660, 3691-3692,
3699-3699

39003900, 3990-3990, 39993999,
9900-9999

2296-2296, 2396-2396, 3010-3011,
3537-3537, 3647-3647, 3694-3694,
3700-3716, 3790-3792, 3799-3799
3720-3729

3730-3731, 3740-3743

3480--3489, 3760-3769, 3795-3795
1040-1049

1000-1039, 10601099, 14001499
1200-1299

13101389, 29002911, 29902999
4900-4999

4800-4899

7020-7021, 7030-7039, 72007212,
7215-7299, 7395-7395, 7500-7500,
7520-7549, 7600-7699, 8100-8199,
8200-8299, 83008399, 84008499,
8600--8699, 88008899

27502759, 3993-3993, 7300-7372,
7374-7394, 7397-7397, 7399-7399,
7510-7519, 8700-8748, 89008999
3570-3579, 36803689, 3695-3695,
7373-7373

3622-3622, 3661-3679, 3810-3810,
38123812

3811-3811, 3820-3830

2520-2549, 26002639, 26702699,
2760-2761, 39503955

2440-2449, 2640-2659, 3210-3221,
3410-3412

4000-4099, 4100-4199, 42004299,
4400-4499, 4500-4599, 4600-4699,
4700-4799
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Whisl  Wholesale 5000-5099, 5100-5199

Rtail Retail 5200-5299, 53005399, 54005499,
5500-5599, 5600-5699, 57005736,
5900-5999

Meals  Restaurants, Hotel, Motel 58005813, 5890-5890, 7000-7019,
70407049, 7213-7213

Banks  Banking 6000-6099, 6100-6199

Insur Insurance 63006399, 6400-6411

RiEst Real Estate 6500-6553

Fin Trading 6200--6299, 6700-6799

Appendix B

Temporal variation in true risk loadings complicates tests of asset pricing
models. This appendix explores this problem in the context of tests of the
three-factor model on industries.

B.1. The negative correlation between intercepts and slopes

The full-period regressions in Table 2 reject the three-factor model. The F-test
of Gibbons, Ross, and Shanken (1989) rejects the hypothesis that the intercepts
in (4) are zero for all industries at the 0.0003 level.

The rejection of the three-factor model seems to be driven by the strong
negative correlation between the three-factor intercepts, a;, and the HML
slopes, h;. The observed correlation, — 0.65, is much stronger than the cor-
relation, — 0.22, implied by the sample covariance matrix of the explanatory
variables under the hypothesis that the regression coeflicients are constant
through time and the same for all industries. To highlight the correlation
between h; and a; Table 2 sorts industries on their HML slopes. All
positive three-factor intercepts more than two standard errors from zero are
associated with negative HML slopes; all negative intercepts more than
two standard errors from zero are associated with positive HML slopes. Real
Estate produces the most extreme negative intercept, — 1.01% per month
(t = — 5.45), and the third largest HM L slope, 0.40. The drug industry produces
the largest positive intercept, 0.61% per month (¢t = 3.88), and the lowest HML
slope, — 0.63.

Negative correlation between abnormal returns and slopes is not special to
the HML slopes in Table 2. The correlation between the intercepts and market
slopes in the CAPM regressions, — 0.26, is more negative than the estimated
correlation of their sampling errors, — 0.10. Similarly, the correlations between
the intercepts and the Ry — Ry and SMB slopes in the three-factor regressions,
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—0.27 and — 0.44, are also more negative than the estimated correlations of
their sampling errors, — 0.14 and — 0.06.

There are at least two interpretations of these negative correlations. First,
perhaps the risk premiums in the CAPM and the three-factor model are
overstated. For example, if the three-factor model overstates the risk premium
associated with distress, it will overpredict the returns on industries with high
HML loadings and underpredict the returns on industries with low HML
loadings.

The alternative interpretation is that the negative correlations between inter-
cepts and slopes are driven by time-varying risk loadings. Specifically, we argue
that the negative relation between abnormal returns and HML loadings is
a natural consequence of the dynamics of growth and distress. Consider an
industry that becomes distressed. In the three-factor model, one result of distress
is an increase in h;, the industry’s loading on HML. If the industry’s bad times
are unexpected, the increase in h; is probably accompanied by negative abnor-
mal returns in (4). Conversely, the surprise onset of good times likely implies
a decline in an industry’s HM L loading and positive abnormal returns. Extend-
ing the argument, industries that on balance have more surprise bad times
than good times during our sample period are more likely to have positive
HML slopes and negative intercepts in estimates of (4). Industries whose
cumulative shocks are positive probably have negative HML slopes and
positive intercepts.

This argument is not limited to the HML slopes. The negative correlations
between the intercepts and the market and SMB slopes are consistent
with the hypothesis that bad news about future cash flows also tends to
raise an industry’s risk loadings on these factors. In addition, increases
in risk loadings raise discount rates and lower current prices. Both effects
create negative correlation between abnormal returns and factor risks. Chan
(1988) and Ball and Kothari (1989) make a similar point about CAPM
market betas.

In sum, we hypothesize that in three-factor regressions like those in
Table 2, industries with large positive HML slopes are more likely to
have experienced surprise distress and negative abnormal average returns
during the regression estimation period. Conversely, industries with large
negative HML slopes are more likely to have experienced surprise good times
and positive abnormal average returns. The result is a negative correlation
between intercepts and HML slopes in the three-factor model. The alternative to
this dynamics-of-distress story is the bad-model hypothesis that the three-factor
model exaggerates the premium for distress. It overestimates expected returns
on industries with high HML slopes and underestimates expected returns on
industries with low HML slopes. The next two sections try to distinguish
between these two hypotheses by looking at portfolios with roughly constant
risk loadings.
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B.2. Tests using deciles formed on past industry HML slopes

Suppose we allocate industries to deciles based on past HM L slopes. Both the
bad-model hypothesis and the dynamics-of-distress hypothesis predict negative
correlation between intercepts and HML slopes during the portfolio-formation
period. But they make different predictions about the post-formation returns on
the deciles. The bad-model hypothesis says that the negative relation between
intercepts and HML slopes is a model specification problem (an exaggerated
premium for distress) that will persist in post-formation returns. In contrast, the
dynamics-of-distress story predicts that the three-factor model will look better
in post-formation returns. Specifically, if we re-form the deciles frequently based
on past HML slopes, there should be little unexpected drift in their post-
formation HML slopes. Thus, if the expected-return Eq. (3) holds, the intercepts
in three-factor regressions on post-formation returns should be close to zero and
largely uncorrelated with post-formation HML slopes.

To test these predictions, we sort industries into two sets of deciles, using
three- and five-year past HML slopes. We re-form the portfolios monthly
and weight industries equally in the deciles. Table A.1 shows average values
of the formation-period three-factor regression coefficients for the deciles.
The predicted negative relation between intercepts and HML slopes is
clear. Growth portfolios (strong negative formation-period HML slopes) have
strong positive formation-period abnormal average returns. Distress portfolios
(strong positive HML slopes) have strong negative formation-period abnormal
returns.

The formation-period regressions are important because they show that
allocating industries to portfolios based on their HML slopes emphasizes
(rather than diversifies away) the negative formation-period relation between
three-factor regression intercepts and HML slopes. Thus, if the negative forma-
tion-period relation between intercepts and HML slopes is a bad-model
problem (an exaggerated premium for distress), it should reappear in the
post-formation returns on the portfolios. Table A.2 shows that this does not
happen. Instead, as predicted by the dynamics-of-distress story, the three-factor
intercepts for post-formation returns are close to zero and largely unrelated to
the post-formation HML slopes. The Gibbons, Ross, and Shanken (GRS) tests
in Table A.2 confirm that the post-formation intercepts are consistent with the
three-factor model.

The success of the three-factor model in the tests on post-formation decile
returns (Table A.2) is also consistent with the evidence in Tables 3 and 4 that
industry slopes on HML wander through time. If the slopes were constant, the
negative correlation between intercepts and HML slopes in Tables 2 and A.1
would be a bad-model problem. With constant slopes, industries would
not move much across the deciles and the tests on post-formation returns
(Table A.2) would tend to reproduce the strong negative correlation between
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intercepts and HML slopes observed in formation-period returns (Table A.1).
Again, this does not happen.

B.3. Deciles formed on industry BE/ME

Tables A.1 and A.2 also summarize tests on deciles formed in June each year
using industry book-to-market ratios (BE/ME) for the fiscal year ending in the
preceding calendar year. We hypothesize that, like high past HM L slopes, high
BE/ME is likely to identify industries that on balance experienced recent
surprise distress (and low stock returns), while low BE/ME is likely to be
associated with recent surprise growth. Table A.1 confirms this prediction. There
is the usual strong negative relation between intercepts and HM L slopes in five-
year regressions estimated on returns preceding formation of the BE/ME deciles.

Table A.1
Summary statistics for portfolios formed on BE/ME or on three- and five-year past HML slopes
from three-factor regressions

R; — Ry =a; + b;[Ry — R} + 5;SMB + b HML + ¢;

Ry — R, SM B, and HML are defined in Table 1. In parts A and B, industries are allocated to deciles
(five industries per decile, except for the fifth and sixth, which have four) every month beginning in
6/68 based on their HML slopes estimated from three or five years of past monthly returns. Returns
on the deciles are calculated for the following month with equal weighting of the industries in
a decile. In part C, industries are allocated to BE/ME deciles in June of each year t from 1968 to
1994. Monthly returns on the deciles are calculated for the following year (July to June) with equal
weighting of the industries in a decile. BE is the sum of book equity (defined in Table 1) for the firms
in an industry that have positive Compustat BE for the fiscal year ending in calendar yeart — 1. ME
is the sum of ME at the end of December of year t — 1 for these firms. Thus, BE/ME uses only
Compustat firms, but the industry returns include all NYSE, AMEX, and NASDAQ firms on CRSP.
The table shows the average values of the ranking period (6/68—11/94, 318 months) three-factor
regression coefficients, and means, standard deviations (Std. dev.), and t-statistics for the means
[t(Mean)] of the decile returns for the post-ranking period (7/68-12/94).

Decile 1 2 3 4 5 6 7 8 9 10

Part A: Portfolios formed on three-year pre-ranking HML slopes

Ranking-period regression coefficients

Mean a 0.41 0.22 0.11 0.12 002 —-008 —-014 —-019 —031 —044
Mean b 1.00 1.01 1.03 1.00 1.02 1.02 1.02 1.03 1.05 1.08
Mean s 0.26 0.29 0.30 0.39 0.41 0.44 0.38 0.42 0.39 0.44
Meanh  —082 —048 —-029 —0.14 -0.03 0.06 0.17 0.29 0.46 0.73

Post-ranking returns

Means 0.66 091 0.82 0.92 1.07 1.02 0.99 1.02 1.06 1.10
Std. dev. 6.10 5.81 5.80 5.56 5.56 5.61 5.28 5.31 5.23 5.27
t (Mean) 1.92 2.78 2.53 2.94 343 3.23 3.32 341 3.60 3.72
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Table A.1 (continued)

Decile 1 2 3 4 5 6 7 8 9 10

Part B: Portfolios formed on five-year pre-ranking HML slopes

Ranking-period regression coefficients
Mean a 0.41 0.25 0.10 008 —002 —006 —010 —022 —-031 —044

Mean b 1.04 1.02 1.03 1.04 1.00 1.03 1.04 1.04 1.01 1.03
Mean s 0.30 0.31 0.27 0.40 0.46 0.47 0.43 0.37 0.36 0.44
Mean h —-071 —042 —-025 —-0.11 —-000 0.07 0.15 0.26 0.39 0.62

Post-ranking returns

Means 0.93 0.74 0.71 091 0.99 1.07 0.10 1.04 0.94 1.10
Std. dev. 6.28 57 5.81 5.73 5.67 572 5.22 5.22 5.15 5.03
t (Mean) 2.64 232 2.19 2.84 310 333 3.77 3.56 3.27 3.89

Part C: Portfolios formed on BE/ME

Pre-ranking five-year regression coefficients

Mean a 0.53 0.31 0.03 0.06 004 —012 —-021 —-025 —-025 —-044
Mean b 0.93 1.03 1.05 1.10 1.03 1.03 1.03 1.04 1.04 1.00
Mean s 0.14 0.40 0.38 0.36 0.37 0.42 0.48 0.34 0.41 0.44

Meanh —-049 —-028 —0.15 —-007 —-002 0.06 0.07 0.16 0.33 0.32

Post-ranking returns

Means 0.76 0.91 0.72 0.94 0.91 1.03 0.85 1.01 1.19 1.21
Std. dev. 5.52 6.01 5.84 5.56 5.55 5.51 5.43 5.29 5.25 5.47
t (Mean) 245 2.7 221 3.00 292 334 3.78 3.38 4.02 393

Again, however, since we re-form the BE/ME portfolios annually, there
should be little unexpected drift in their true post-formation HML slopes. If the
three-factor model holds, three-factor regressions on post-formation returns
should produce intercepts close to zero, and the negative correlation between
HML slopes and intercepts should largely disappear. Table A.2 confirms these
predictions.

The portfolios formed on industry BE/ME also provide evidence on whether
survivor bias drives the book-to-market effect in average returns. Kothari,
Shanken, and Sloan (1995) argue that average returns on high-BE/ME port-
folios of Compustat stocks are overstated because Compustat is more likely to
include distressed firms that survive and miss distressed firms that fail. Since our
industries contain all NYSE, AMEX, and NASDAQ stocks, the strong spread in
post-formation average returns (0.45% per month, or about 5.5% per year) for
portfolios formed on industry BE/ME (Table A.1) cannot be attributed to
survivor bias. Our results are thus consistent with the more detailed evidence of
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Chan, Jegadeesh, and Lakonishok (1995) that Compustat survivor bias cannot
explain the strong positive relation between BE/ME and average return.

B.4. The unresolved testing problem

The portfolios formed on past HM L slopes and BE/ME in Tables A.1 and A.2
refute the bad-model interpretation of the strong negative correlation between

Table A.2

Three-factor and one-factor regressions for post-formation returns on portfolios formed on industry
HML slopes or industry book-to-market equity ratios: 7/68-12/94

R, — R; =a; + b;[Ry — R{] + s;:SMB + h, HML + ¢, R,—Ri=a;+ bj[Ry—R] + ¢

Ry — Ry, SMB, and HML are defined in Table 1. The formation of deciles on industry BE/ME or
HML slopes is described in Table A.l. One- and three-factor regressions are estimated on the
post-formation returns for 7/68-12/94 (318 months). The regression R? are adjusted for degrees of
freedom. t(a) is the t-statistic for an intercept. The standard errors of b, s;, and h; are about 0.03, 0.04,
and 0.05. F (a) is the F-statistic of Gibbons, Ross, and Shanken (1989) for tests of the hypothesis that
the intercepts for all deciles are zero; p(F) is its p-value (the probability of a value of F as large or
larger than the sample value if the true intercepts are all zero). Mn(a), Mn(|al), and Mn(a?) are the
average, average absolute, and average squared values of the intercepts for a set of deciles.

Three-factor One-factor

Decile a b s h R? t(a) a b R? t{a)

Regressions for portfolios formed on three-year past HML slopes
1 —0.11 1.03 037 —045 089 —095 —035 1.21 083 —244

2 0.05 1.04 032 —-027 0.88 045 —0.08 0.17 085 —0.64
3 —0.06 1.07 0.36 —023 092 —-066 —017 1.19 088 —1.56
4 —0.08 1.09 0.31 0.00 092 —094 -007 1.15 090 —0.67
5 0.10 1.02 043 —0.02 0.88 0.85 0.10 1.11 0.84 0.81
6 —0.04 1.09 0.40 0.12 090 —045 0.04 1.14 0.87 0.34
7 - 0.09 0.98 0.50 0.22 0.88 —0.89 0.05 1.03 0.80 0.35
8 —0.05 1.04 0.38 0.18 090 —0.56 0.06 1.07 0.86 0.55
9 —0.02 1.00 0.38 0.22 086 —0.15 0.12 1.03 0.81 0.93
10 —0.05 1.00 0.40 0.37 082 —-037 0.18 1.00 0.75 1.19

10—1 007 —0.03 0.03 082 034 036 052 -021 0.06 249
Regressions for portfolios formed on five-year past HML slopes

1 - 017 1.05 038 —049 0.88 139 009 1.24 082 —0.58
2 —0.09 1.03 032 —-031 091 —085 —-024 0.16 087 —210
3 —0.25 1.08 040 —0.09 090 —234 028 1.18 087 —234
4 - 0.07 1.07 045 —0.05 092 -073 —008 1.17 088 —0.70
5 0.02 1.09 0.34 0.00 090 —0.15 0.00 1.16 0.88 0.01
6 —0.00 1.08 0.45 0.13 0.88 0.00 0.09 1.13 0.83 0.68
7 0.11 098 0.40 0.06 0.88 1.09 0.16 1.04 0.84 1.36
8 —0.09 1.04 0.38 0.32 0.89 —050 0.10 1.04 0.83 0.84
9 —-0.14 1.02 0.37 0.24 090 —1.47 0.00 1.03 0.85 0.05
10 —0.02 095 0.37 0.36 0.81 —0.17 0.20 0.94 0.73 1.33
10—-1 -01%9 —-010 -0.01 0.86 038 —1035 028 —030 0.11 1.31
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Table A.2 (continued)
Three-factor One-factor
Decile a b s h R? t{a) a b R? t(a)
Regressions for portfolios formed on industry BE/ME
1 0.09 0.95 007 —0.53 0.87 081 —0.20 1.09 0.82 —1.50
2 0.10 1.02 046 —0.38 0.91 1.00 -0.09 1.20 0.84 —0.68
3 -0.23 1.07 045 —0.11 092 -—-237 —027 1.19 087 —231
4 —0.02 1.04 040 —006 090 -021 —004 1.13 0.87 —034
5 —-0.11 1.08 0.33 0.05 090 —104 —006 1.13 0.87 —0.58
6 0.04 1.00 0.48 0.02 0.87 0.38 0.07 1.09 0.82 0.57
7 —0.21 1.03 0.46 0.14 091 —-218 0.1t 1.09 0.85 —096
8 —0.08 1.04 0.35 0.21 089 —074 0.06 1.06 0.85 0.47
9 0.08 1.04 0.40 0.27 0.90 0.78 0.24 1.05 0.84 2.04
10 —0.06 1.09 0.46 0.55 089 —0.61 0.26 1.05 0.77 1.78
10—-1 —016 0.13 0.39 1.08 054 —1.02 046 —004 —0.00 2.09
Summary of regression intercepts (excluding 10 — 1)
Explanatory variables F(a) p(F) Mn(a) Mn(|al) Mn(a?)
Regressions for portfolios formed on three-year past HML slopes
Ry — R¢ 1.350 0.203 —-0.012 0.122 0.0227
Ry — R SMB HML 0.637 0.782 —0.037 0.067 0.0052
Regressions for portfolios formed on five-year past HML slopes
Ry — R 2.074 0.026 -0.014 0.124 0.0234
Ry — R; SMB HML 1.762 0.067 —0.038 0.095 0.0144
Regressions for portfolios formed on BE/ME
Ry — R¢ 2.384 0.010 —0.015 0.141 0.0275
Ry — R¢ SMB HML 1.513 0.134 —0.039 0.102 0.0145

intercepts and HML slopes in Table 2. Although there is a large spread in the
portfolios’ post-formation HML slopes, the three-factor intercepts are close to
zero, and there is little relation between the intercepts and HML slopes.
Moreover, the portfolios in Tables A.1 and A.2 have roughly constant HML
slopes. In contrast, the implied volatilities in Table 3 and the conditional
regressions in Table 4 say that there is substantial variation in the true HML
slopes for industries. Thus, it appears that the large negative correlation between
the intercepts and HML slopes in Table 2 — and the strong rejection of the
three-factor model — are caused by the dynamics of growth and distress.
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Because the conditional regressions in Table 4 seem to capture the wandering
SMB and HML slopes, one might hope that they also absorb the intercepts
produced by the dynamics of growth and distress. In fact, the intercepts in these
regressions are close to those of the constant-slope regressions in Table 2.
A naive application of the GRS test (the explanatory variables in the conditional
regressions are not the same for all industries) rejects the three-factor model as
strongly in the conditional regressions as in the constant-slope regressions.

Why don’t the conditional regressions absorb the regression intercepts? Even
if we knew the true model for expected returns and the true risk loadings at the
beginning of each month, the dynamics-of-distress story predicts a negative
correlation between intercepts and unexpected drift in risk loadings. Bad news
that increases risk loadings is likely to produce a negative abnormal return;
good news is likely to produce lower risk loadings and a positive abnormal
return. Thus, in tests of the true asset pricing model that use the true time-
varying risk loadings, we can predict the abnormal average return for a test
period based on the unexpected drift in the true risk loadings during the period.
We do not predict that an industry’s average abnormal return is zero unless, by
chance, its risk loadings at the end of the test period are the same as at the
beginning.

Negative correlation between abnormal returns and unexpected drift in risk
loadings does not by itself imply, however, that tests of asset pricing models are
biased toward rejection. If the intercepts generated by the dynamics of growth
and distress are just average values of normally distributed return shocks, they
satisfy the assumptions of the GRS test, and they do not bias the tests in Tables 2
and 4 toward rejection of the three-factor model. In fact, if we maintain the other
assumptions of the GRS test, such as multivariate normality and a constant
covariance matrix for the residuals, wandering risk loadings increase the resid-
ual variances in constant-slope regressions like those in Table 2, and so make
false rejection of an asset pricing model less likely.

Then why do we reject the three-factor model in Tables 2 and 4? Perhaps the
three-factor model misses important industry factors in expected returns that
happen to be negatively related to HML slopes. For example, Real Estate
produces the most extreme intercepts in Tables 2 and 4, — 1.01% (t = — 5.45)
and — 1.02% (t = — 5.22) per month. Applying Bonferroni’s inequality to the
t-statistics of the Real Estate intercepts [multiplying their univariate p-values by
48(1)] in itself produces a comfortable rejection of the hypothesis that the
three-factor regression intercepts are zero for all industries. It is then tempting to
argue that Real Estate stocks are a hedge against the relative price of housing
services (a potential state variable in the ICAPM), so the equilibrium expected
return on Real Estate is less than predicted by the three-factor model. Unfortu-
nately, this hedging argument also seems to predict negative intercepts for the
health industries (Drugs, Medical Equipment, and Health Services), but their
intercepts in Tables 2 and 4 are positive, and large. Indeed, the intercepts for
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Drugs, 0.61 (t = 3.88) and 0.58 (t = 3.64), suffice to reject the hypothesis that the
three-factor regression intercepts are zero for all industries.

Another possibility is that the rejection of the three-factor model in Tables 2
and 4 is due to violations of the assumptions of the GRS test. For example, the
residuals from the three-factor model are not multivariate normal. In Table 2,
the average kurtosis of the residuals for the 48 industries is 4.22. In simulations
of the GRS test, Affleck-Graves and McDonald (1989) find that departures from
normality of this magnitude can substantially increase the probability of reject-
ing the true asset pricing model.

Until we better understand the testing problem created by negative correla-
tion between abnormal returns and stochastic drift in the risk loadings of
industries and firms, perhaps the best solution to the problem is to test asset
pricing models on portfolios formed to have constant risk loadings. This is, of
course, the approach in Tables A.1 and A.2, and in most of the existing
literature.

Appendix C

We can represent the one-and three-factor regressions (2) and (4) as
Ri — .Rf :Xﬂi‘i‘gi,

where B; (2x 1 or 4 x 1) is the vector of true regression coeflicients for industry
iin (2) or (4), X is the (N x2 or N x4) matrix of explanatory returns for
N months, and R; — R; and ¢; are (N x 1) vectors of excess returns and distur-
bances. If the joint distribution of security returns is multivariate normal (MVN)
and if B; is constant, then the ordinary least squares (OLS) estimate of §;, B,
is MVN with mean vector f; and covariance matrix ¢2(g;)(X'X) ™",

B ~MVN[;, 6*(e)) (X'X) "] . (A.1)

In a Bayesian framework, f; is a random vector. We assume a prior distribu-
tion for f; that is MVN with mean vector  and covariance matrix %(f) (2 x 2 or
4 x 4),

B: ~MVN[B, 2(B)] . (A2)

With these assumptions, Blattberg and George (1991) show that the mean of
the posterior distribution of §; is

E(f) = D) '[X'X/a*(e) B) + Z(B)" ' B, (A.3)
where

D)= X'X/o*(e)+ X(p)~ . (A.4)
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The posterior mean is a thus a weighted average of the prior mean f and the
sample estimates B; where the weights are relative precisions. Equivalently,
rearranging (A.3), the posterior mean shrinks the OLS B; toward the prior mean
B to correct the sample estimates for sampling error,

E) =B, — W(i)(B.— B, (A.5)
where the shrinkage matrix W (i) is
W@ =D 'Z(p) . (A.6)

To implement (A.5), we estimate f§ as the mean, across industries, of the B; for
an estimation period, and we estimate 62 (¢;) as the variance of the OLS residuals
for industry i, 6*(e;). The estimates of § and X'X are specific to an estimation
period, and 6%(e;) is specific to industries and estimation periods.

Invertibility problems force us to use an estimate of X(f) for the overall
sample period. Specifically, we can estimate the covariance matrix of the B; with
the sample covariance matrix (2 x 2 or 4 x 4) of the B; for an estimation period,
denoted by C(B). We can then estimate Z(f) as

C(p) = C(B) - &*()(X' X)™", (A7)

where 67 (e) is the mean of 67 (e;) across industries. When we use C(f) to estimate
Z(P) for each regression estimation period, there are occasional periods when
C(p) is not invertible. Intuitively, there are periods when the dispersion of the
B; estimates across industries [ C(B)] is too low, relative to the average estimated
covariance matrix of the sampling errors of the slopes [C(B — f) =
6%(e)(X’' X)~ '], to produce a meaningful covariance matrix for the true slopes.
To bypass this problem, we produce one overall estimate of X (f), using average
values across estimation periods of the three components of C(f) in (A.7).

There is one final problem in estimating X(f). The estimate for the overall
period is typically not invertible if the intercepts in (4) are included. Intuitively,
the average cross-sectional variance of the estimated intercepts is not large
enough, relative to the sampling-error variances of the estimates, to produce
a meaningful estimate of the cross-sectional variance of the true intercepts. We
interpret this as evidence that a dogmatic prior for the intercepts (zero) must be
used to get Bayes estimates of the regression slopes. In other words, to get Bayes
estimates of the slopes in (4) we must impose the three-factor expected-return
Eq. (3). Thus, the intercepts are dropped in all the inputs in (A.5).

For perspective on the Bayes estimates, Table A.3 shows averages, over
industries and estimation periods, of the key shrinkage inputs for five-year
rolling estimates of the slopes in (2) and (4). Note that estimates of the standard
deviation of the true market slopes in the three-factor regressions are small
(around 0.16) relative to the those for the SMB and HML slopes (around 0.40
and 0.33). As a result, although the market slopes are estimated more reliably
(they have smaller standard errors), the weighting matrix that produces shrunk
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Table A.3
Shrinkage inputs for five-year one-factor and three-factor regression slopes

R,' - R[ =a; + b.'[RM — R]'] + e;, R, — Ry =a; + b,-[RM - R[] + SiSMB + h,HAML + ¢

Ry — Ry, SMB, and HML are defined in Table 1. One-factor and three-factor regressions are
estimated for each industry for each month of the 6/68 to 11/94 period, using a rolling window of five
years of past monthly returns. In the three-factor regressions, C(B) is an overall estimate of the
covariance matrix of the estimated regression slopes. C(B) is the average, across regression estima-
tion periods, of the (3 x 3) matrix of the covariances (across industries) of the regression slopes for an
estimation period. C(B — f§) is an overall estimate of the covariance matrix of the estimation errors of
the estimated slopes. C(B — f) is the average, first across industries and then across estimation
periods, of the residual variances in the three-factor regressions, times the average, over the
estimation periods, of (X’ X) ™!, the inverse of the covariance matrix of the explanatory variables.
C(f) = C(By — C(B — By is an overall estimate of the covariance matrix of the true regression slopes.
s(B), s(B — B), and s(B) are the square roots of the diagonal elements of C(B), C(B — f), and C(f). The
three-factor shrinkage matrix, W, uses overall averages (over industries and then regression estima-
tion periods) of each of the terms in (A.4) and (A.6). This W matrix is illustrative, but it is not used in
Tables 5 to 7. We do use the overall C(§) shown here in Tables 5 to 7, but the other elements of (A.4)
and (A.6) used to calculate shrinkage weights are specific to industries and estimation periods. s*(b),
s*(b — B), and s%(B) are the one-factor analogues of C(B), C(B — f), and C(B).

Three-factor One-factor
b s h

C(B) s(B) s3(b) s(b)
b 0.042 0.012 — 0.000 0.205 0.067 0.258
$ 0.012 0.194 0.018 0.441
h — 0.000 0.018 0.155 0.394

C(B - B) s(B — B) st (b — B) s(b — B)
b 0.015 — 0.006 0.010 0.124 0.013 0.115
s — 0.006 0.036 0.002 0.189
h 0.010 0.002 0.044 0.208

C(p) s(f) 5*(B) s(B)
b 0.027 0.018 —0.010 0.163 0.053 0.231
s 0.018 0.159 0.015 0.399
h — 0010 0.015 0.111 0.334

1% w
b 0.658 0.059 —0.062 0.816
s 0.206 0.839 0.028
h —-0213 0.038 0.764

slopes gives more weight to the sample estimates of the SMB and HML slopes
than to the sample estimates of the market slopes. Roughly speaking (ie.,
ignoring the off-diagonal terms in the weighting matrix) about 66% of
the difference between an industry’s OLS market slope and the average
market slope is allocated to its shrunk market slope, whereas about 84% and
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76% of the OLS estimates of the SMB and HML slopes make it into the
shrunk slopes.
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