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Modelling framework
The choice of the modelling framework has been driven, to a large extent, by its suitability to provide insights into, and estimates of, the impacts on net social welfare (discussed below) of policies that are a central focus of the inquiry.
The types of policies of interest include:

· policy bans prohibiting certain augmentations of water supply

· mandated sources of augmentation, such as desalination

· smoothed pricing over time

· restrictions on end-use demand for water.
A fit-for-purpose modelling framework would have the following attributes: 

· a capability to simulate economic equilibria for an urban water system, which includes spatial, temporal and risk (rainfall) dimensions

· a spatial and temporal representation of consumer demand, utility supply and equilibrium prices

· a time horizon sufficient to capture efficient inter-temporal consumption and pricing, as well as investment in water supply and the operation of supplies
· capacity to model a variety of pre-existing and new sources of water supply such as dams, desalination, recycling, rural–urban trade and aquifers, including engineering and environmental factors that constrain their operation
· a stochastic representation of risk arising from the variability of inflows to dams, and the corresponding impacts on investment risk and consumer prices
· scope to simulate the impacts on economic equilibria of policies that are a central focus of the inquiry.
The remainder of this chapter outlines the reasons for development of a model based on stochastic mathematical programming.
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The underlying core (deterministic) framework

In developing a stochastic programming model, the first step is to identify the underlying core deterministic model, which is solved in a mathematical programming framework. In this study, the core model is based on the spatial and temporal price and allocation models developed by: Enke (1951); Samuelson (1952); Yaron, Plesner and Heady (1965); and Takayama and Judge (1971).

There is a large body of literature describing the application of this framework to study the economic consequences of policy and resource allocation issues in fields such as electricity, natural gas, agriculture, and the environment. Examples include: Heady and Srivastava (1975); Meister, Chen and Heady (1978); Hazell and Norton (1986); Labys, Takayama and Uri (1989); Heady and Vocke (1992).

Price endogenous mathematical programming is based on long established and accepted microeconomic theory. The base framework computes an economically efficient market equilibrium, as documented in: Takayama and Judge (1971); McCarl and Spreen (1980); and Hazell and Norton (1986). 

It does this by maximising net social welfare (net social payoff), which is equivalent to:

· the sum of Marshallian consumer plus producer surplus

· gross consumer benefit less total cost of supply, including any imputed economic rents from resource or policy constraints (Pressman 1970) 
· consumer surplus plus total revenue less total cost of supply (Williamson 1966) or

· setting consumption to equate marginal social benefit with marginal social cost.
McCarl and Spreen (1980) note that price endogenous mathematical programming has proven to be a particularly useful tool to simulate the effect of new policies upon a sector.

The modelling framework is rich in terms of simulating the effect of policies through the specification of new production activities, new constraints and changes to the right-hand-side resource constraints, objective function coefficients and technical coefficients within the constraints (McCarl and Spreen 1980).

The approach documented in this study formally encapsulates the theory for efficient pricing embedded in the literature discussing urban water policy — such as Ng (1987), Mayo (1989), and Sibly (2006a) — using an explicit inter-temporal (dynamic) mathematical programming framework. 
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Extension of the core model to stochastic mathematical programming
Urban water demand and supply is complicated by the probabilistic nature of future rainfall and inflows to dams. The Commission has adopted a state contingent approach to incorporating variability of inflows into dams. The case for adopting the state contingent approach is based on the idea that risk can be represented by a set of possible states of nature (in this case low, medium and high inflows). The uncertainty of inflows can be represented by a vector of state contingent right‑hand‑side terms (low inflow, medium inflow and high inflow). In this situation, risk is represented as a multi-output technology (Quiggin and Chambers 2006). This means that the treatment of risk is analogous to:

· production technologies, such as Leontief fixed coefficients, which are commonly applied in computable general equilibrium models and input/output models (Chambers and Quiggin 2000)

· the theory used in the analysis of peak-load pricing, where the production capacity of a facility is not substitutable across time (Steiner 1957; Williamson 1966; and Littlechild 1970) (for example, if a 150 GL desalination plant is not used this year, the unused capacity cannot be added to next year to produce 300 GL)

· production of public goods exhibiting non-rivalry in consumption. 

The state contingent approach is just a logical extension (albeit complicated in practice) of the economic theory already in the core price endogenous mathematical programming frameworks (Lane and Littlechild 1976 and 1980), a point that has been emphasised more generally by Quiggin and Chambers (2006). This extends the core mathematical programming framework to include risk, an important consideration when modelling investment decision making with stochastic inflows.

Although risk is explicitly incorporated into the state contingent model, it is a risk‑neutral framework. In order to use the area under the demand function as a cardinal measure of welfare, it is necessary to assume that the marginal utility of income is constant. It is common practice to assume that the marginal utility of income is unity, so that one dollar of income or expenditure is equal to one unit of utility. This requirement does not allow risk-averse behaviour to be incorporated because risk-averse behaviour requires the marginal value of income to vary.

Using a state contingent approach results in a scenario tree for inflows over time, illustrated in figure 
2.1. A state contingent model includes variables at each node in the scenario tree (for a given state of nature), which are in turn affected by the nodes that preceded them. In an urban water system, the consumption, pricing and investment decisions at a particular node will not only be a function of present inflow levels, but also past storage and investment decisions. The state contingent nature means that nodes are only directly impacted by decisions that come before them in the scenario tree. For example, if a desalination plant was built in node 1 (figure 
2.1), it could be relied on to supply water in nodes 3 and 4, but not in nodes 5 and 6.

Figure 2.
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Illustrative scenario tree for only two states of nature over four yearsa 
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a(The full models contain 3 states of nature (high, medium and low) over 10 time periods.

Embedding a state contingent framework within a mathematical programming framework results in a stochastic mathematical programming model. These types of model are well documented in the operations research literature (for example, Birge and Louveaux 1997). The two frameworks are combined through the use of expected values: the outcome of the core mathematical programming model is replaced by the expected value resulting from the weighting of all outcomes in the scenario tree. 
The incorporation of expected values results in a deterministic equivalent formulation of the model (Kall and Wallace 1994), which can be expressed as a single linear programming problem. Linear programs can be solved using commercially available, computationally efficient, computer software, without the need to design specific solution algorithms for each of the numerous simulations. This allows for greater freedom in conceptualising and designing the model, and including a range of constraints important for gaining insight into the policies of interest (such as inter-temporal engineering constraints, price smoothing over time, and inter-temporal water restriction triggers).
On the other hand, the large size of the deterministic equivalent linear programming models and computational limits mean that the number of states of nature and length of the planning horizon are necessarily limited.
An alternative to stochastic mathematical programming is stochastic dynamic programming (box 
2.1). Stochastic dynamic programming has been applied to a range of policy areas in the past, in particular urban water (for example, Hughes, Hafi and Goesch 2009; and Grafton and Ward 2008a). However, as explained in box 
2.1, mathematical programming was chosen based on practical considerations given the resources (time and cost) available to the inquiry.

Figure 
2.2 describes how multistage stochastic programming models compare to alternative frameworks. 

Do not delete this return as it gives space between the box and what precedes it.
	Box 2.
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Stochastic dynamic programming as an alternative to multi-stage stochastic programming

	The linear programming model used in this study considers all variables, constraints and stages (multi-stage stochastic scenario tree) simultaneously as one large model. There are alternative approaches to solving the same problem, based on breaking the large problem into a series of recursive, smaller problems. One of these is stochastic dynamic programming.

Stochastic dynamic programming solves models by optimising the level of a specified function for each decision point in the decision tree (Wagner 1974). Example functions include the cost of operating a supply system, or the net social welfare in a market.

In the case of the model used in this study, the key to applying stochastic dynamic programming is being able to formulate (or reformulate) the original linear programming model (by creating a decision tree) so that the equivalent formulation has the pre-requisite properties to apply the Principle of Optimality, which states:

An optimal policy [solution] has the property that, whatever the initial state and decision [that is, control] are, the remaining decisions must constitute an optimal policy [solution] with regard to the state resulting from the first decision. (Intriligator 1971, p. 327)

The decision-making tree for a stochastic dynamic programming model is comprised of all the decisions that a policy-maker or investor can control. These ‘state variables’ directly influence the function that is optimised at each decision point, thereby optimising the path taken through the decision-making tree (Kall and Wallace 1994). The size of the tree is dependent on a range of variables: the number of investment options; the capacity of each investment constructed at a given decision point; an investment’s utilisation at each point in the tree; the level of water in storage; and environmental constraints limiting the utilisation of certain supply sources.

The application of stochastic dynamic programming to the model used in this study would require the nested discretisation of many of the continuous variables (such as storages) in the linear programming model as state variables, in order for the Principle of Optimality to apply. For the existing linear programming model, this state space would be large. The process of defining the appropriate state space (decision tree) would need to be redefined for the various policy formulations of the models used.

There is no single efficient computer programming software to handle all formulations of dynamic programming models, notwithstanding that the dynamic programming recursion process is not particularly difficult to write using computer programming languages. Furthermore, calculating an efficient, wholesale price for a model of the same form as the one used in this study would be difficult, requiring post-optimisation calculation techniques (AEMO 2010c).

When the number of state variables are limited, stochastic dynamic programming is a viable approach to modelling water systems. By limiting the number, order and size of investments as well as discretising storages, stochastic dynamic programming models can be used to simulate long planning horizons (for example Hughes, Hafi and Goesch 2009; and Grafton and Ward 2008a).
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Comparing stochastic programming frameworksa
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a Shaded areas identify the frameworks that form the basis of the Commissions modelling

Source: Based on combining material from figures 2 and 5 published in Valente, Mitra, Poojari and Kyriakis (2001).
A stochastic mathematical programming model can be formulated as either a two‑stage or a multi-stage problem (for summaries, see Kall and Wallace 1994, and Birge and Loveaux 1997). Both allow for some decisions to be made based on expectations about future inflow variability (for example, decisions about dam storage and new investment in supply capacity, which are known as state variables) while other recourse decisions (for example, about the quantity of water delivered) can be made after observing inflow outcomes, and are conditioned by the previous decisions about the state variables. 
A two-stage stochastic programming approach calculates the optimal investment plan across all future inflow scenarios. Multi-stage stochastic programming is differentiated from two-stage stochastic programming in that it allows supply augmentation decisions (state variables) to be made over time as inflows (the state of the stochastic parameter) are revealed (Birge and Loveaux 1997). All of the investment decisions in the planning period do not need to be collectively committed to in advance. Rather, investment decisions are made over time as the sequence of inflows, and hence water scarcity, is revealed. It encapsulates the real options or adaptive management approach referred to in discussions of water policy supply augmentation (WSAA 2008a). This approach is discussed in greater detail in chapter 5.
As outlined above, the core mathematical programming model forms the basis of the model. Stochastic inflows are incorporated using a state-contingent approach, resulting in a stochastic mathematical programming model. Given the stochastic mathematical programming framework, the model is formulated as a multi-stage stochastic problem. 

For the modelling for this study the multistage stochastic framework is used because it does not require unique solution algorithms to be developed to solve the multitude of models. The main objective of this work is to acquire insights in to the effects of policies commonly applied in the urban water sector in Australia. For this reason, the model needs to be able to deal with complex policy simulations in a simple and transparent manner.

A basic introduction to the partial equilibrium modelling framework and concepts, and their stochastic counterparts using a simplified model is presented in appendix A. Appendix B contains the mathematics for the full model used in this supplement.
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