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The Net Social Revenue Approach to 

Solving Computable General Equilibrium 

Models 

Abstract 

In this paper, we set out a new way to solve Computable General Equilibrium (CGE) models 

that contain inequality constraints and the associated complementarity (slackness) 

conditions. The approach is an extension of the Net Social Revenue formulation of Spatial 

and Temporal Pricing and Allocation models by Takayama and Judge. Our nonlinear 

programming framework to developing and solving CGE models expands the scope for the 

types of models that might be applied to evaluating economic policy, potentially improving 

policy relevant analysis. The nonlinear programming approach also increases the number of 

computer software packages available for both building and solving CGE models, including 

open source packages. The properties of the model (zero objective function value and 

symmetry of Lagrangean and model variables at the optimal solution) are also useful for 

developing and calibrating a model and verifying that it is correctly specified. Make a 

mistake and these do not hold. The framework presented in this paper is not appropriate for 

every exercise. The cost of the additional effort and time required to build a complete, 

integrated model might exceed the benefits of additional policy insights. But at least the 

possibility exists and could be justified for specific policy issues. 

Background 

Partial Equilibrium (PE) and Computable General Equilibrium (CGE) models are the focus 

of this paper. Although these models are simplifications of the real world, they provide the 

policy analyst with a laboratory for testing ideas and policy proposals (McCarl and Spreen 

1980; Hazell and Norton 1986). PE and CGE models have strengths and weaknesses for 

informing judgements about specific policy issues. The choice of modelling framework 

depends partly on the policy questions under consideration and the nature of the sector(s) to 

which the policies have substantial impacts on.  

Partial equilibrium models 

Partial equilibrium models (implemented using mathematical programming frameworks) 

have been used widely, particularly where industry-specific or technological details are 
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fundamental to the analysis of policy issues. PE models can incorporate detailed economic, 

policy, regulatory, institutional and technological/biological/engineering characteristics. 

The inclusion of these attributes in applied economic equilibrium models can provide 

important insights into policy by creating a link between theory and empirics (McCarl and 

Spreen 1980; Hazell and Norton 1986). PE models have been applied widely to analyse 

policy and resource allocation issues in fields such as electricity, natural gas, water, 

agriculture, environment and trade. Examples are Takayama and Judge 1971; Heady and 

Srivastava 1975; Meister et al 1978; Norton and Solis 1983; Hazell and Norton 1986; Labys 

et al 1989; Heady and Vocke 1992; MacAulay 1992; Salerian et al 2000; Barker et al 2010; 

and Loulou et al 2016. 

A strength of PE models is the scope to model technologies and policies explicitly by 

drawing on the complementarity (slackness) conditions embodied in mathematical 

programming. For example, policies that can be binding or non-binding, technologies that 

can switch on or off or be optimally selected from a portfolio (sometimes endogenously 

interacting with policy). Consider the Renewable Energy Target operating within the 

Australian National Electricity Market (NEM). To understand and assess this policy it is 

desirable to include the appropriate technology and economic principles embodied in peak 

load pricing and the merit order dispatch of electricity generators, as well as incorporate the 

policy of a lower bound (floor) on renewable electricity generation target (Murray and 

Salerian 2018). 

The economic equilibrium theory encapsulated in PE models is derived using Karush–

Kuhn–Tucker conditions. (Intrilligator 1971; Takayama and Judge 1971).  

A limitation of PE models is the inability to incorporate endogenous shifts in income, which 

are often an economy-wide consequence of policies under investigation (McCarl and Spreen 

1980; Hertel 1990; and MacAulay 1992). This specific limitation is overcome using applied 

CGE models. 

Computable general equilibrium models 

CGE models have been used widely where inter-industry, inter-regional or economy-wide 

impacts of policy are important. CGE models used for policy analysis come in a variety of 

scales and modelling platforms. 

Some have evolved over time to become large-scale, recursive comparative static (dynamic) 

models. These nonlinear models (nonlinear system of simultaneous equations) are often 

solved by expressing them as linear systems of equations. This is achieved by converting the 

nonlinear levels models to percentage change form and using multistep solution processes 

to find a precise solution to the nonlinear system of equations. Examples include the Victoria 

University Regional Model (VURM, Adams 2015), the United States of America General 

Equilibrium Model (USAGE, Dixon and Rimmer 2002), and the Global Trade Analysis 

Project model (GTAP, Hertel 1997). 
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Other CGE models have been formulated and solved in levels (defined as a nonlinear system 

of simultaneous equations), as advances in solving nonlinear systems of equations have been 

developed (examples include Rutherford 1998; Devarajan et al 1990; and Lofgren et al 2002). 

Although CGE models are well-suited to examining sectoral/industry linkages and 

economy-wide interdependencies, they often have stylised industry representation. For 

example, technology is often specified using nested constant elasticity of substitution and 

transformation production functions as illustrated in Lofgren et al 2002 (figure 1: Production 

Technology), Dixon et al 1992 (figure E4.5.1: The Input-Activity Specification in the DMR 

model), and Horridge et al 1993 (figure: 6 Structure of production, figure 7: Structure of 

Investment Demand and figure 8: Structure of Consumer Demand). This is convenient for 

generating models in the percentage change form, but can be a limitation in capturing the 

principles underpinning the behaviour of agents in a specific sector. 

The economic equilibrium theory encapsulated in CGE models is derived using classical 

mathematical programming sub-models regarding the behaviour of the various agents in the 

CGE model of the economy. Constraints are equations, and the theory of the Lagrangean is 

used to derive the first order equations for a solution (square system of equality constraints 

and variables). 

CGE models with inequality constraints and 

complementarity conditions  

Combining the strengths of both PE and CGE models into a unified modelling framework 

has proved challenging. Set out below are the three main approaches to solving CGE models 

with complementarity conditions (inequality constraints and nonnegative variables). 

Mixed Complementarity Programming (MCP) 

A MCP, as described by Ferris (2000), adds a combinatorial twist to the classic square 

system of nonlinear equations, thus enabling a broader range of situations to be modelled. 

These problems arise in a variety of disciplines including engineering and economics where 

we might want to compute a Wardropian and Walrasian equilibria, and optimisation where 

we can model the first order optimality conditions for nonlinear programs. Other examples, 

such as bimatrix games and options pricing, abound. 

Examples of developing CGE models using the MCP framework include Rutherford (1987) 

and Lofgren and Robinson (1997). These CGE models are solved using MCP solvers such 

as PATH (Dirkse and Ferris 1995) and MILES (Rutherford 1993, 1995).  
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Mathematical Programming with Equilibrium Constraints (MPEC) 

MPEC is a solution strategy that uses mathematical programming methods to solve a CGE 

model formulated as a MCP. The approach is to transform the MCP problem into Mixed 

Integer Programming (MIP) or a NonLinear Programming (NLP) models, which are solved 

iteratively to find a solution to the underlying MCP (CGE) model. Examples include the 

NLPEC procedure in GAMS (Ferris et al 2005) and MPEC procedure in Pyomo (Hart and 

Siirola 2015). 

Sequential Joint Maximisation (SJM) 

The SJM approach involves solving a sequence of partial equilibrium relaxations of the 

underlying general equilibrium model (Dixon 1975; Rutherford 1999), such that the prices 

and quantities iteratively converge to yield a solution to the CGE model. The partial 

equilibrium sub models can be solved as MCP or NLP problems. 

In this paper, we set out another way to solve CGE models that have inequality constraints 

and complementarity conditions. The approach is an extension of the Net Social Revenue 

(NSR) formulation of the spatial and temporal equilibrium modelling framework of 

Takayama and Judge (1971) and further developments to their framework, which are set out 

in MacAulay (1992). By using the NSR approach, we can build and solve a CGE model as 

a single NLP model. 

Takayama and Judge Net Social Revenue approach to 

Economic Equilibria 

To understand how we came to the idea that a CGE model could be formulated as a NLP 

model with economic equilibria described by inequality constraints1 we need to go back in 

history. In 1971, Takayama and Judge published Spatial and Temporal Price and Allocation 

Models. The approach to modelling economic equilibria in spatial markets for the multi-

commodity non-integrable case is set out on pages 121 to 125 of their book.  

The economic environment is where the regional demand and supply functions do not satisfy 

the integrability conditions. This means that a welfare objective function cannot be 

constructed and the approach of solving the spatial equilibrium model using a welfare 

maximum has to be abandoned. 

                                                 

1 There are many examples where CGE models that are defined as a simultaneous set of nonlinear equations 

are solved using nonlinear programming packages, see for example Lofgren et al (2002) page 44. In these 

situations, the nonlinear programming algorithm’s search for a feasible solution is used to solve a nonlinear 

set of equations. The choice of the objective function has no bearing on the solution as there is only one 

feasible solution to the model. 
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However, Takayama and Judge set out an alternative (general) model formulation to solve 

spatial equilibrium models whether the integrability conditions hold or not. This formulation 

is called the Net Revenue Maximum (NRM) model. Takayama and Judge state that the 

welfare maximisation formulation is a special case of the NRM formulation (page 39). Other 

names used to describe the NRM model are Primal-Dual (page 139), Net Social Monetary 

Gain (page 250), the General Formulation (Takayama and Labys 1986; MacAulay 1992) 

and NSR (Takayama and MacAulay (1989 and 1991). We adopt the NSR terminology 

because we think it best describes the nature of the objective function (discussed later). 

Since 1971, there have been significant developments in the application mathematical 

programming to PE models. Takayama and MacAulay (1991) and MacAulay (1992) show 

that the original quadratic programming formulation can be generalised to nonlinear 

functions with desirable properties. MacAulay (1992) also reports on how the NSR 

formulation can be extended to cover a wide range of policy and economic environments 

(including non-competitive spatial equilibrium models). 

Computer packages and computing power have progressed markedly so that it is now 

possible to build and solve large scale nonlinear and complementarity programming models. 

To begin, we start with the NSR formulation set out Takayama and Judge (1971) described 

by equation 6.3.1 on page 121 and equation 6.3.2 on page 122 of their book. These are 

reproduce here as equations 1 and 2. We have added the complementarity variables and 

conditions for constraints. The linear algebra orthogonality symbol (⊥) means that at least 

one of the adjacent inequalities must be satisfied as an equality (Ferris and Munson 2000, 

page 167). This also represents the complementarity (slackness) conditions encapsulated in 

the Karush-Kuhn-Tucker conditions, whereby the complementarity variable can be greater 

than or equal to zero if the inequality constraint is binding, but is zero if the constraint is not 

binding. We use this notation to draw out points and observations about the model relevant 

to developing a way forward for CGE models. 

The objective function for the NSR model is given by equation 1, which maximises: 

 revenue from sales of commodities in each regional market, given by multiplying the 

quantity demanded by the Marshallian (indirect) demand function 

 less the cost of supplying each commodity in each region, given by multiplying the 

quantity supplied by the Marshallian (indirect) supply function 

 less the cost of transport for each commodity from each supply region to each demand 

region, given by multiplying the quantity transported by the unit cost of transport. 

The symbols i and j refer to regions and k refers to commodities. 
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The constraints to the NSR model are given by equation 2. 
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The heart of the formulation is a set of economic equilibrium conditions (equation 2) 

expressed as inequalities with complementarity variables and conditions. As noted in 

Takayama and MacAulay (1989), there are two sets of inequality constraints. One set relates 

to the balance of supply and demand quantities. The other is a set of spatial price equilibrium 

conditions. The two sets of equilibrium conditions also describe a MCP model, more 

precisely a linear complementarity programming model, as noted by Takayama and Labys 

(1986). The equilibrium model described solely by equation 2 can be solved directly using 

a MCP solver, such as PATH.  

But we are interested in the objective function to be used in conjunction with the constraints 

so that the model can be solved as a NLP model. The question is how to derive the objective 

function. Where the welfare objective function exists (so that we can start with a pre-existing 

primal mathematical programming model) it can be shown that the NSR objective function 

is derived by taking the original (primal) welfare maximising objective function and 

subtracting from this its dual objective function using the duality formula set out on page 20 

of the book. The optimisation model described by equations 1 and 2 can be thought of as the 

primal-dual model, as set out on pages 138-139 of Takayama and Judge 1971. It has an 

objective function that is the primal minus the dual and the constraints are those from both 

The primal and its dual. The constraints in equation 2 are also those from the Karush-Kuhn-

Tucker first order conditions to the original welfare maximising primal model. 
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The NSR objective function can be derived directly from the complementarity programming 

model defined by equation 2. This is illustrated drawing on: 

 the primal problem defined by equations 2.1.1 and 2.1.2 on page 12 of Takayama and 

Judge (1971) and Balinski and Baumol (1968) equation 1 on page 237 

 the dual to 2.1.1 and 2.1.2 as specified by equations 2.1.15 and 2.1.16 on page 17 of 

Takayama and Judge (noting the typo) and Balinski and Baumol equation 2 on page 237 

 subtracting the dual objective function from the primal objective function to derive the 

primal-dual objective function.  

the primal problem is given by equation 3 using the Balinski and Baumol notation, which is 

less compact than that of Takayama and Judge and is generalised to nonlinear programming. 
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The dual problem is given by equation 4. 
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The primal-dual model is given by equation 5. 
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The point to note is that the primal-dual objective function only has terms contained in the 

complementarity conditions of the constraints to the primal-dual model. This can also be 

seen by inspecting the net social revenue model presented in Takayama and Judge 1971 

(problems 7.2 on page 139, 12.3 on page 250 and 13.1 on page 260) and the various models 

presented in MacAulay (1992) (problems GM1 to GM5). Therefore, the objective function 

is derivable solely from the constraints using their complementarity conditions.  

The objective function for the MCP model described by the constraints to the NSR model 

can be derived even without reference to an original single primal model. This is the case 

for the model (problem 13.1) in Takayama and Judge (1971) and GM3 to GM5 in MacAulay 

(1992). 

To derive the NSR objective function and NLP formulation of the MCP model, we undertake 

the following steps. 

1. Express all constraints as less than or equal to. This is achieved by multiplying greater 

than or equal to constraints by minus one. We do this to generate a consistent objective 

function representative of the ‘primal minus dual’ or net social revenue.  

2. Derive the objective function by: 

(a) Multiplying all constraints by their respective complementarity variables 

(b) Bringing all terms to the left hand side 

(c) Summing all of the terms across all of the constraints  

The NSR model has the following properties (Takayama and Judge 1971, page 125) at the 

optimum solution: 

 the value of the objective function is zero 

 the value of the new Lagrangean variables associated with the constraints in equation 2 

must be identical to their respective original complementarity variables in equation 2.  
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This model is a square system of variables and inequality constraints and there is full 

symmetry of the Lagrangean variables for constraints with the variables of the model. 

Extension to solve CGE models 

Let’s characterise a CGE model formulated as a MCP model in the following way. There 

are a set of inequality constraints that define the underlying technologies of production, 

household consumption and commodity balances in the system. These are the sets of 

inequalities that define the physical production and consumption of commodities (the 

physical flows or linkages in our economic system). For example: 

 a nested structure of production of composite primary factors, intermediate commodities, 

domestic commodities, export commodities, import commodities, final composite 

commodities, investment, household consumption 

 an industry technology model (electricity plant investment and operation (merit order 

dispatch) and transmission investment and operation. 

Using our MCP framework, the ‘quantity’ constraints define complementarity ‘price’ 

variables, as set out in equation 6. 
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Using mathematical programming theory and the Karush-Kuhn-Tucker conditions for 

optimality, the economic price rules for an equilibrium with respect to each activity (xj) are 

based on linking the complementarity price variables down the column of the variable across 

the constraints, remembering that a CGE model is derived by joining together the 

equilibrium conditions for the various agents in the economy. Using our MCP framework, 

these equilibrium ‘price’ constraints define the complementarity ‘quantity’ variables, as set 

out in equation 7. We use the function h(x) to represent any exogenous function representing 

behaviour of an agent in the CGE model. For example, h(x) could represent the Marshallian 

foreign export demand function (using the quantity formulation, as introduced in Takayama 

and Judge 1971, chapter 7). The remaining terms in such a constraint would represent the 

domestic marginal cost of supplying the export commodity. 
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Now note the similarities between equations 6 and 7 and the NSR model of Takayama and 

Judge (the complementarity constraints in equation 2). In equation 2, constraints (a), (b) and 

(c) correspond to equation 7. Constraints (d) and (e) correspond to equation 6.  
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We can derive a NSR objective function for our CGE model in same way. The objective 

function is given by equation 8. 
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Symmetry of the NLP variables of the CGE model and the new 

Lagrangean variables 

To illustrate why the NLP version of the CGE model has symmetry of its Lagrangean and 

CGE variables, we apply the Karush-Kuhn-Tucker first order conditions to examine the 

equilibrium conditions for our new optimisation model. This mirrors the approach outlined 

in Takayama and MacAulay (1989, page 6) and MacAulay 1992 (pages 302-303). We first 

create the Lagrangean function with two new sets of Lagrangean variables corresponding to 

the two sets of equilibrium constraints in our initial CGE model expressed as an MCP model. 
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The first order conditions are given by the following equations. 
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For brevity and consistency, we write the Karush-Kuhn-Tucker complementarity conditions 

using the MCP notation. Equations 11 and 13 are the same as those in our original CGE 

except that they now define the new Lagrangean (complementarity) variables for the 
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constraints of our new nonlinear programming problem. At the optimum solution to our new 

nonlinear programming problem, vi = φi and xj = γj. This is the same as for the NSR models 

of Takayama and Judge, as noted in MacAulay (1992, equation 9 on page 303). 

With vi = φi and xj = γj at the optimum solution, terms cancel out in equations 6 and 8 and 

they collapse to the original constraints in the CGE model. Therefore: 

 the value of the objective function is zero 

 the original constraints and complementary conditions hold 

 the solution is symmetrical with matching pairs of the new Lagrangean variables and the 

variables in the original CGE model. 

The MCP solution of the CGE model using PATH also exhibits this symmetry. 

Concavity of the maximisation objective function 

In a standard CGE model most production functions are constant returns to scale. So what 

makes our maximisation objective function concave and the model bounded? In our single 

country, long run static CGE model, it is the fixed aggregate supply of labour in the economy 

and the downward sloping Marshallian export demand functions. This property is often 

employed in standard CGE models and explains why export demand functions are price 

responsive. 

Interpretation of the objective function 

The objective function as derived must be zero based on the Karush-Kuhn-Tucker 

complementarity conditions applying to the constraints. Multiplication of each inequality 

constraint by its complementarity variable must be zero and therefore summation of these 

constraints must be zero. 

However, there is an economic interpretation to the objective function. The objective 

function is analogous to that of Social Accounting Matrices (Gilbert and Tower 2013, 

chapter 25) used to calibrate CGE models. 

One can think of the set of commodity flow constraints multiplied by their respective price 

(complementarity) variables as the value of flows of goods and services (sources and uses) 

in the economy (which correspond to rows of a social accounting matrix). 

We can think of the equilibrium price rules multiplied by their respective quantity 

(complementarity) variables as the values of receipts and payments for agents in the 

economy (which correspond to the columns of a social accounting matrix). 

It is for this reason we prefer to use the term net social revenue to describe the objective 

function. 
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The objective function should not be confused with zero net profit to society, driven by 

competitive market rules governing consumption, production and resource allocation. The 

equilibrium models can include many forms of monopolistic and monopsonistic economic 

behaviour by agents in the economy (which create rents), as illustrated in MacAulay (1992). 

However, any economic rents do have to be correctly accounted for in transactions. 

The properties of the model are useful for developing and calibrating a model and verifying 

that it is correctly specified. Make a mistake and the objective function will not be zero and 

there will not be symmetry of the solution. 

Applied Examples 

For illustrative purpose, the GAMS (GAMS 2019) code for a small standard CGE model is 

provided here (a link to the GAMS model code and solution list file on the journal website). 

The model is based on that published by Hosoe (2004) in the GAMS model library. This 

model is small enough to be solved using the free demonstration version of GAMS model 

building software and two solvers available in GAMS (PATH used to solve the MCP and 

CONOPT used to solve the NLP), so anyone can download the GAMS software and run 

these models. We use these models to illustrate the how the NLP version of a CGE model is 

applied in practice and to demonstrate that the approach yields identical solutions to the MCP 

version. 

We have made some changes to the Hosoe model to make it representative of a long run 

steady state economy. We do this by linking industry investment explicitly to the capital 

stock in each industry. The modifications to the model include: 

 exogenously fixing the domestic ownership share of capital stock 

 endogenising domestic saving 

 creating and linking investment activities for each industry to their capital stocks. 

We solve both the MCP (using PATH) and NLP (using CONOPT) models for three scenarios 

 a base case model (which gives us the initial CGE solution), which is also one of the tests 

for a valid model in levels form set out in Dixon and Rimmer (2013) 

 we check that the nominal homogeneity test holds for our single-country model in which 

the nominal exchange rate is the numeraire price, which is another test for a valid model 

CGE model (Dixon and Rimmer 2013) 

 we conduct a policy experiment (a cut in company tax of 10 per cent) 

The MCP and NLP models yield identical results. 

Elsewhere, we have applied the approach to illustrate how we can combine an electricity 

sector PE (Salerian et al 2000) model with a traditional CGE for Australia based on the CGE 

framework of the smaller GAMS model we have provided with this paper (Murray and 

Salerian 2018; Productivity Commission 2019). This model is used to illustrate the economic 
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principles underlying the Australian National Electricity Market (NEM) and the Renewable 

Energy Market by including Australia’s Renewable Energy Target (RET) framework 

explicitly. A description of this model, including the GAMS code is also available from the 

Productivity Commission website.  

Conclusion 

Solving CGE models with inequality constraints and complementarity conditions using a 

unifying nonlinear programming framework opens the door to a wider range of ways to build 

and solve such models. The NSR (and NLP) approach set out here is more direct and simpler 

than the SJM and MPEC approaches. There are now many packages available for building 

and solving nonlinear programming models, including open source model building 

languages and solvers, such as Pyomo/Ipopt (Hart et al 2012; COIN-OR foundation 2019).  

We have not assessed the comparative efficiency of building and solving CGE models using 

the Net Social Revenue formulation versus the alternatives. This is an area for future 

research. 

We do see scope to broaden the types of CGE models developed. For example, risk could 

be introduced into CGE models using the state contingent framework of Chambers and 

Quiggin (2000). This could be used to model risk regarding generation supply from 

renewable sources and the use of storage batteries to arbitrage generation across time periods 

reflecting the state of demand and supply. This a natural extension of the temporal price 

models set out in Takayama and Judge (1971). 

Such approaches will not be appropriate for every exercise. For some analyses, the cost of 

the additional effort and time required to build a complete, integrated model can exceed 

the additional benefits gained. But at least the possibility exists and could be justified for 

specific policies. 
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