

Recent developments in productivity measurement

Paul Schreyer

OECD Statistics Directorate

Canberra, 20 November 2012

Introduction

- Productivity = output/input
- Issues:
 - Identifying, measuring and aggregating inputs and outputs
 - Level of measurement (economy, industry, firm)
- Academic community dealing with productivity measurement and analysis
- World KLEMS network
- NSOs: no clear trend

This presentation

1. Bringing nature into the productivity picture

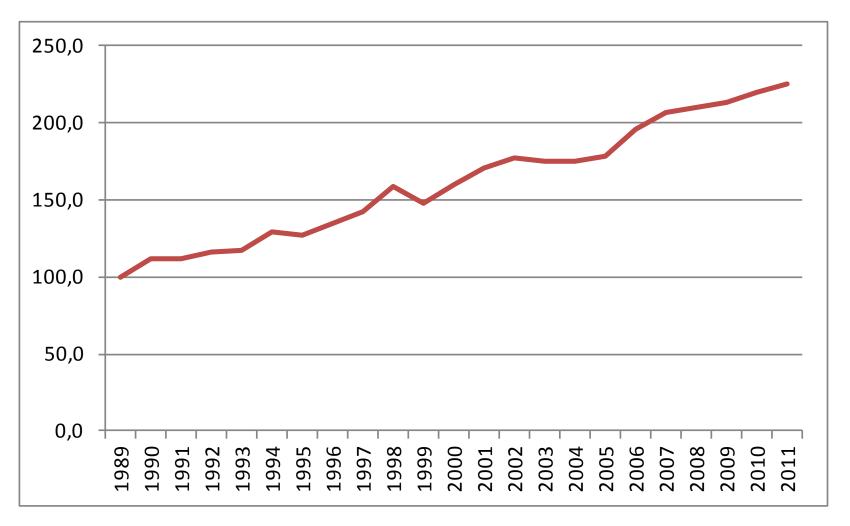
2. The firm level: productivity measurement with micro-data

No claim for comprehensive presentation of recent developments

Bringing nature into the productivity picture

Bringing nature into the picture – input side (1)

- **Typical inputs:** labour, produced capital, intermediate inputs
- Often neglected: non-produced natural assets:
 - Mineral resources
 - Soil/land
 - Timber
 - Aquatic resources
 - Water

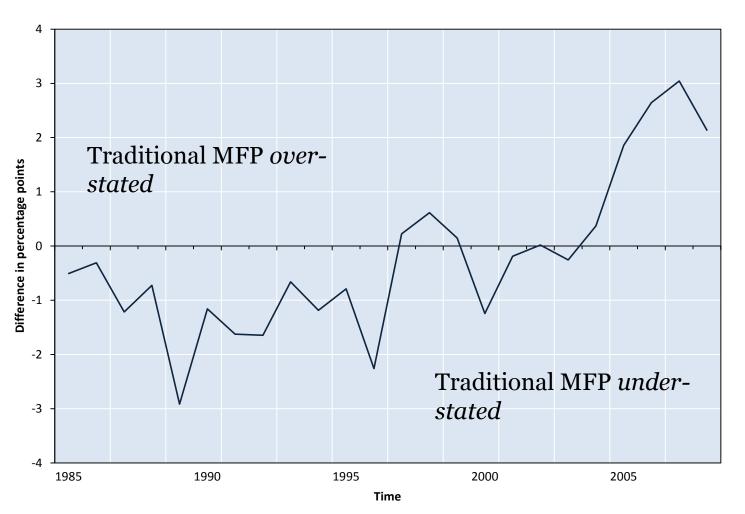


Bringing nature into the picture – input side (2)

- Why important?
 - Assessing contribution of natural assets to economic growth
 - Measuring productivity correctly
 - Policy implication: is growth driven by MFP or by natural assets
 - Note: without measurement, direction of bias unknown

Volume index of subsoil asset removals, Australia, 1989=100

Source: OECD calculations, based on ABS data.


No unambiguous direction

Effect of including natural resource input on measured productivity growth:

- Traditional MFP > adjusted MFP if :
 - natural resource input growth > traditional input growth
 - i.e., total input growth has been *under*stated
 - i.e., traditional MFP growth has been overstated
- And vice versa

Norway – Difference between adjusted and traditional MFP growth

Source: OECD, work in progroess.

Challenge: quality of natural resource input

 Capture changing marginal extraction costs (which may be increasing)

- Capturing changing **quality in the resource itself** eg declining soil quality
- → failing to do so will overstate measured contribution of natural resource to output and understate MFP

Effects on productivity measures: Australia's mining industry

- Study by Productivity Commission (Topp, Soames, Parham, Bloch 2008):
- Similar in spirit except that mining output is adjusted for declining yields
- Underlying rate of productivity growth is around 2.5 per cent p. a., compared with stagnant standard MFP (1974 to 2007)
- →Natural resource input has grown less quickly than other inputs, so MFP was understated by traditional measure

Bringing nature into the picture – output side (1)

- Production processes often accompanied by undesirable outputs, e.g., emissions
- From producer and MFP measurement perspective:
- Relevant in presence of environmental policies:
 - explicit price (e.g., tax) or
 - implicit price (marginal abatement costs due to regulation)

Are traditional MFP measures over-or understated?

Again, no unambiguous effect on measured productivity (1)

Example:

- Given inputs (labour, capital,...)
- Rising traditional output
- Constant emissions

→adjusted MFP > traditional MFP

→ Productivity growth was required to keep emissions at bay

Again, no unambiguous effect on measured productivity (2)

• But overstatement of traditional MFP if emissions grow quicker than traditional output

• For many pollutants (NOx, Sox, CO2,...) relative decoupling in many OECD countries

→ Understatement of traditional MFP

Private and social valuation

- Producer perspective = private valuation
 - marginal abatement cost for producer
- Welfare perspective = social valuation
 - marginal cost to society = producer costs + consumer costs + externalities
- Both perspectives meaningful but should not be mixed up
- If productivity measurement is based on producer theory, producer perspective is called for

OECD work in this area...

• As part of *green growth indicator* work

- -MFP adjustment with **natural asset inputs**
- MFP adjustment with undesirable outputs
- Index of natural resources

Important international development: SEEA

- System of Integrated Environmental and Economic Accounts
- Adopted at UN level in 2012
- Consistent accounting for environmenteconomy interaction
- Basis for indicator work
- Unifying element: balance sheets
 - Stocks, additions, removals
 - Physical and monetary valuation

Major task ahead: implementation

The firm level: productivity measurement with micro-data

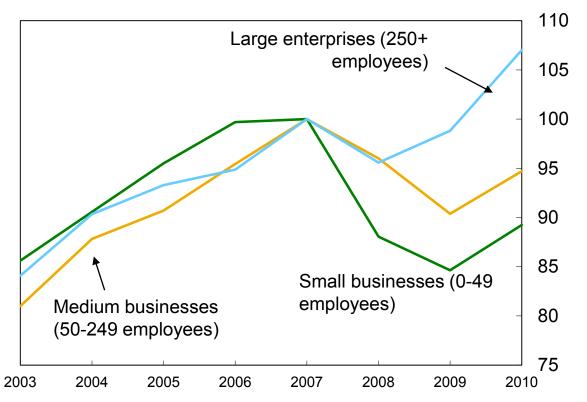
Firm-level measurement

Drawbacks

No prices, capital proxy, employees,
 incomplete sector coverage, short time-spans

Avantages

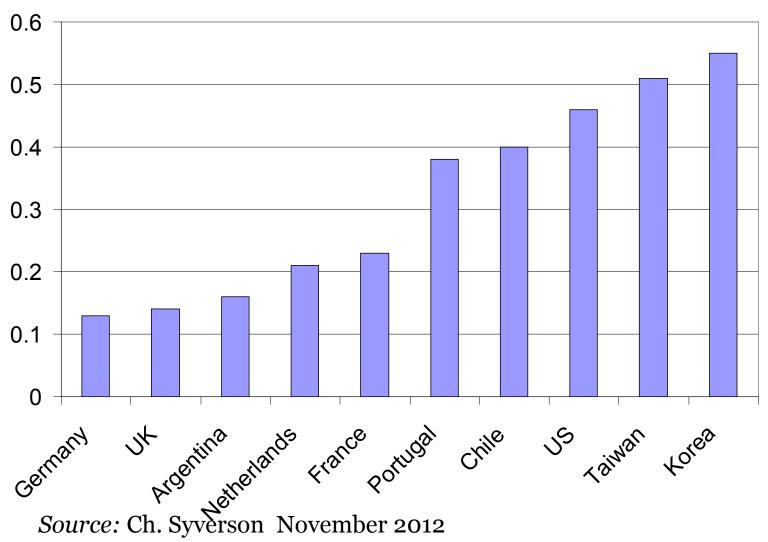
- Entry, exit, reallocation
- Within-firm cycle/growth
- Understanding/measuring both firm-level levers and environmental factors driving growth


Stylised facts from micro estimates (1)

- Huge productivity dispersion
 - Even within very narrowly defined industries
 - Firm size plays an important role
 - But how accurately are outputs measured?

UK: Labour productivity by firm size

Source: J. Saleheen, Bank of England 2012



Stylised facts from micro estimates (2)

- Reallocation or resources to highproductivity producers important
- Competition—consumers can easily switch suppliers
- Labor and capital market flexibility
- Summary measure of reallocation: correlation between productivity and market share

Correlation between Productivity and Market Share

Firm-level measurement requires dealing with...

- Large volumes of data
- Confidentiality issues
 - Small countries
 - Narrowly defined industries
- No international standards reduced comparability

NSOs have taken up issue

Conclusions

Conclusions (1)

 Nature of productivity implies cumulation of measurement challenges

• Quality of source data (national accounts, firm-level data) key

 Integrating productivity measurement into official statistics important but not yet widespread

Conclusions (2)

- Tricky output measurement in particular in:
 - Financial services
 - Health, education, general administration
 - Undesirable outputs
- Tricky input measurement:
 - Hours worked by industry and by skills
 - R&D capital (new in national accounts)
 - Natural capital
- Intangibles

Thank you!

