The SALTER Model: Construction of the European Database

A report for the Industry Commission

by
Cillian Ryan
University of Wales
Bangor

SALTER Working Paper No. 10

JULY 1992
SALTER working papers document work in progress on the development of the SALTER model of the world economy. They are made available to allow scrutiny of the work undertaken but should not be quoted without the permission of the author(s). Comments on the papers would be most welcome.

THE SALTER MODEL: CONSTRUCTION OF THE EUROPEAN DATABASE

A repon for the Industry Commission, Australia by

Cillian Ryan
University of Wales
Bangor

The Salter Model:

Construction of the European Database

A report for the Industry Commission, Australia

by
Cillian Ryan
University of Wales
Bangor

For queries relating to the construction of this database please contact:

> Dr. Cillian Ryan, Department of Economics, University of Birmingham, Edgebaston, Birmingham, B15 $2 \mathbb{T} T$, U.K.

Phone: 44-21-414-6640
Fax: 44-21-414-6707

I wish to thank Dr. Paul Brenton, University of Birmingham, who provided considerable expertise and assistance in the construction of this database and Andrew Welsh of the Australian Industry Commission for his invaluable input, updating and implementing of the European database. I am also grateful to Prof. Alan Winters and Dr Shanti Chakravarty for their advice and the assistance of many individuals throughout Europe, not least to those who provided me with unpublished Input-Output data, Dr Milanos and Dr Eamonn Henry. None of these is responsible for any errors in this document or the database which remains my exclusive responsibility. I am also grateful to Geraldine Swanton for excellent research assistance.

The Salter Model : Construction of the European Database

Index:

1. Introduction 1
2. Data Sources: General Overview 1
3. Prices 3
4. Aggregation of the 12 Countries 4
5. Sectoral Disaggregation 10
6. EC7 and Country Specific Comments 14
6.1 EC7 Table Manipulations 14
6.2 Spain. 18
6.3 Portugal 18
6.4 Greece 18
6.5 Ireland 19
6.6 Luxemburg 19
6.7 Duty 20
6.8 Freight 21
6.9 Income Tax and Transfer Payments 22
(Table) 23
6.10 Capital Stock 22
6.11 Marginal Tax Rate 26
6.12 Depreciation Rate 27
6.13 Other Significant Alterations to the Table 27
6.14 Updating 28
Footnotes 29
References and Sources 30
Appendix 1: Input-Output Table for European Community. 32
Key 32
Intermediate Production 33
Final Demands 37
Intermediate Imports 38
Final Imports 42
Primary Inputs 43
Taxes 47
Appendix 2: Concordance Between Salter 34 Sector Table, ECR59, SITC, and NACE Classifications 53
Appendix 3: Concordance Between Salter 34 Sector
Classification and Irish Classification 59
Appendix 4: Details on taxes provided (by sector) in individual EC Input-Output Tables 62

The Salter Model: Construction of the Buropean Database

1. Introduction:

The principal task of this project was to provide an integrated 34 sector Input-Output table for the twelve EC countries; Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain and the United Kingdom.

2. Data Sources: General Overview:

The EC compiles and publishes input-output tables in National Accounts ESA, Input-Output Tables 1980 , Eurostat 2C with either 44 or 59 sectors, depending upon the country in question, at 5 yearly intervals. The most recent of these is for 1980 which contains 44 sector tables (designated as R44) for Denmark, Germany, Spain, Portugal and 59 sector tables (designated as R59) for France, Italy, The Netherlands and the United Kingdom (R59). Accounts for Belgium, Ireland, Greece and Luxembourg are not available in this publication, however, the 1980 Belgian figures for 59 are now available in a separate paper from Eurostat. ${ }^{1}$

Abstract

These tables form the principal source of information for the study and thus, this report, which describes the adaptation of these tables along with data for the remaining countries into the 34-sector, 12 nation, EC/Salter model, should be read in conjunction with the methodology employed by Eurostat in the construction of the EC Input-Output tables outlined in National Accounts ESA, Input-Output Tables 1980, Eurostat 2C,

Eurostat also issues on tape an aggregated 44 sector $I-O$ table which includes Belgium as well as six of the above countries, (Denmark, France, Germany, Italy, The Netherlands and the United Kingdom) .

The table for Greece was complied using data supplied by Dr Milanos of the Greek Centre of Economic Planning and Economic Research, which developed an Input-Output model for Greece using the 59 sector EC guidelines for 1980 , under the directorship of Professor Maria Constantopoulos. Dr. Milanos, who compiled the original tables, is now compiling the official Greek-EC tables for 1985.

The table for Ireland was compiled for 1982 using a 21 sector Input-Output table supplied by Dr. Eamonn Henry of the Economic and Social Research Institute, Dublin based upon earlier work by him on the Irish economy. Dr. Henry is currently seconded to the Irish Central Statistics Office and is working on the official 59 sector, Irish-EC input-output table for 1985.

No official Input-Output table exists for Luxemburg and we could find no unofficial table as there is no alternative public source of economic research, (there is no university in luxemburg). It is also difficult to get international figures on its outputs as they are generally incorporated with Belgian figures (with which it is fully integrated, even sharing a common currency) in international publications. However, the Statistics Office in Luxembourg recommended using the OECD national accounts for

Luxemburg which gives the output by sector of 44 agricultural and industrial sectors. Accordingly, the aggregated table has been adjusted to take account of the economic activities in Luxemburg that are significant in European terms, chiefly its steel industry and international banking. Given that Luxemburg only accounts for approximately . 15\% of European G.N.P., this loss of detail is insignificant both in economic and statistical terms.

3. Prices

The Value Added system of taxation (VAT) in operation throughout the $E C$ involves producers adding tax to the sale price of a good depending upon the value added by them to their inputs. The intention of the VAT system is that the final consumer should pay the tax and that the choice of inputs should not be distorted. As a result, value Added Tax paid by producers on their intermediate inputs is refundable except for a few small exceptions. Thus, the prices employed in this IOT are producer prices/ex customs prices net of deductible VAT, that is, factory gate prices net of deductible value added tax. We should note here that the EC employs a further refinement of producer prices, which it refers to as 'basic prices'. These are producer prices net of taxes on the product (that is, the non-deductible element of VAT), paid by the producer unit but including other net taxes linked to production which it pays. The rationale for this lies in the fact that,

[^0]depending on whether or not the purchasers are entitled to a refund of VAT on the goods purchased. Similarly, the analysis of the inputs of a given branch may or may not include taxes linked to production, depending upon the type of products it produces." (Input-Output Tables 1980, Eurostat 2C, Introduction, p.IX)

The rot in this study includes a Commodity Tax Revenue matrix which captures the difference between producer prices and basic prices and its derivation is discussed in Section 4.1 and 6.1 below. However, as a consequence of the fact that the burden of taxation falls on consumers under the VAT system, the Commodity Tax Revenue matrix is not, in practice, very important in the EC at present.

4. Aggregation of the 12 Countries

4.1 EC7 versus Sum of the seven individual EC countries:

There are two possible ways to proceed with the country aggregation and the sectoral aggregation/disaggregation. One could perform the sectoral aggregations/disaggregation for all countries separately and then add them together. Alternatively, one could use the common EC 44 sector classification, add the countries together and then perform the aggregation/disaggregation for Europe as a whole.

Ideally the former scheme is to be preferred as it would allow the sectoral aggregation/disaggregation to be more sensitive to variations across countries. However, the EC7 table contains several items of information not otherwise available. In
particular, the EC7 table has been constructed with access to the original import/export data, thus enabling the compilers to distinguish correctly between intra-EC trade and trade with the rest of the world, and to make appropriate adjustments for entrepot and erratic trade. ${ }^{2}$ Further, the table has been constructed using basic prices employing data on non-deductible VAT which the compiling statistical institutes regard as otherwise confidential.

In order to compile the most accurate producer price table and commodity tax table, we aggregated (see Section below) the published producer-price tables of the 7 (Belgium, Denmark, France, Germany, Italy, The Netherlands and the United Kingdom). The Commodity Revenue matrix can then be derived by comparing the calculated table with the EC7 table at basic prices. The figures obtained were then cross-checked with figures derived from other sources for taxes on products (see Section 6.1).

We then proceed to aggregate/disaggregate the EC7 table into the relevant Salter sectors (with the exception of agriculture) and then to add the separately aggregated/disaggregated remaining countries.

4.2 Aggregation of the Countries.

The methodology employed in the calculation of the community table follows the methodology outlined in the Introduction, Section 4 of Input-Output tables 1980 , page XII, Eurostat Publication 2C, which should be read in conjunction with this document.

The currency unit employed throughout is the ECU. The conversion rates from the ECU to national currencies used in the aggregation are outlined in Table 1.

Table 1: ECU/ National Currency Conversion Rates, 1ECU=

Belgium	BFR 40.6
Luxembourg	LFR 40.6
Denmark	DKR 7.83
W. Germany	DM 2.52
Greece	DR 59.32
Spain	ESC 69.55
France	FF 5.87
Netherlands	HFL 2.76
Italy	LIT 1189
Portugal	PTA 99.7
United Kingdom	UK 0.598
Rep of Ireland	IRL 0.676

Source: Eurostat - National Accounts, ESA Aggregates, (1980).

The principal area of concern for us is the treatment of intra-EC imports \& exports. The convention adopted is that imports from Community countries are merged with the value of domestic production. As a result, in the table of primary inputs and resources, the row imports CIF of similar products from EC countries' is deleted. In theory, "the whole of the column corresponding to exports to $E C$ countries in the table of final uses, for each product, should be equal to the sum of imports from the Community. ${ }^{3}$ In practice this is not the case due to problems with harmonization, differences in valuation and retrading and the absence of Greece, Ireland and Luxemburg from the EC calculations, (Spain and Portugal were used in the EC7 trade calculations). As a result the EC table7 has a column entitled (trade) adjustment in the table of final uses to ensure balance.

When the missing countries are included we still do not arrive at a zero trade adjustment column for the other reasons cited, and thus the trade adjustment column has been incorporated in the stock adjustment column in the final uses table. It should be noted here that the adjustment does not contribute significantly to the stock adjustment column (less than 1% of the total in each sector) and the column remains relatively unimportant. (There is one exceptional category which is large for an unrelated reason, see Section 6.13).

The Commission does not recommend that Spain and Portugal be integrated with the other countries as they are not readily compatible. They were not members of the community in 1980 and their system of indirect taxation was based upon a Cascade Turnover Tax rather than a Value Added Tax like the rest of the EC. A similar objection can be raised against the inclusion of Greece which also operated a system of turnover taxes at that time. 4

The option we face is either to disregard these countries completely and to RAS the EC7 table by the Spanish, Greek and Portuguese sectoral outputs, or to try to take account of the different tax regimes and use the Input-Output tables supplied for each country. Given that all these countries are more labourintensive than the European average and are comparatively underdeveloped vis-a-vis their European partners, RAS'ing does not appear to be an appropriate technique. Thus, incorporating the 'imperfect' Spanish, Greek and Portuguese data would appear to be the lesser of the two evils.

Additional support for this approach follows from the following argument: In principle, in the absence of distortions caused by the degree to which VAT deductions can be made on purchases of particular inputs, VAT does not distort inputs. Given demand, for a cascade turnover tax to have similar effects to that of a var system requires that a seller is able to pass on the tax paid to the purchaser who in turn must be able to pass it on to the final consumer. This requires that each industry has a perfectly elastic supply curve or that they are all perfectly competitive, which is the assumption employed in the model. Strong though this assumption may be, no real alternative exists in a project with this time-scale.

The Spanish and Portuguese tables do not provide separate tables detailing EC and the rest of the world (ROW) trade. It is, however, possible to determine the breakdown by reference to the Commodity Flow accounts published in Eurostat 2 C , see appendix 5.

Aggregating Greece and Ireland presented additional problems as there are no Input-Output tables for imports available for those countries. Import totals are available by sector, and it is possible to derive the EC/ROW breakdown from the OECD Statistics on Foreign Trade using the SITC/Salter conversions outlined in Appendix 2. The shares employed are detailed in Table 2 below.

For categories where no EC/Greek/Irish percentage is reported, we used the inter-EC\% average for that sector from the Commodity Flow accounts cited above, weighted by the Irish/EC or Greek/EC
average for all sectors versus the Inter/EC trade average for all sectors implied by the commodity flow tables.

Table 2: Share of Greek and Irish Trade with the EC.

EC Sector	Greece	Ireland
010	18.6	56.9
030	10.3	29.2
050		
073	59.7	91.7
075		
110	0.4	13.3
130	0.0	0.0
150	29.2	89.5
170	73.6	90.9
190	74.6	82.6
210	73.3	78.9
230	64.1	39.7
250	63.3	68.7
270	25.7	77.5
310	87.1	99.8
330	77.2	99.2
350	96.5	53.5
370	95.4	45.7
390	39.3	79.3
410	53.7	18.6
430	09.0	45.5
450	81.2	58.3
470	65.0	85.0
490		79.0
510		

Source: Statistics of Foreign Trade, Series B, O.E.C.D. Paris.

In order to derive the input-output import matrix for these countries it is required that either we use the same coefficients as domestic intermediate usage or we use the European average. While neither Greece nor Ireland can be described as average EC countries, (in both cases the entire country is designated as disadvantaged by the EC), in view of the fact that the third country imports are generally different goods to those acquired either within the country itself or from other EC countries, it seems preferable therefore to use the EC I-O coefficients for
intermediate usage of imports. Accordingly, we RAS'ed the European Import table by the derived Irish/ROW and Greek/ROW imports for each sector to obtain a breakdown of domestic/imported inputs for Ireland and Greece.

The final important reconciliation in country aggregation is the treatment of taxes linked to imports of similar products from EC countries. These are logically taxes on EC production and are thus added to the appropriate row of primary inputs.

5. Sectoral disaggregation

5.1 The Industrial Sectors:

Salter/EC concordance required the disaggregation of 4 ECR44 sectors:

EC010 Agricultural, forestry and fishery products
EC410 Textiles and Clothing
EC070 Crude petroleum, natural gas \& petroleum products
EC190 Metal products except machinery and transport equipment.

In order to do this, we initially obtained estimates for the share of the value of output and costs of inputs in each Eurostat sector comprising the Salter sector. This is possible for the EC410, EC070 and the EC190 industries from Eurostat 4C,`Structure and Activity of Industry' using the NACE/Salter conversions in Appendix 1. These shares are presented in Table 3.

Table 3: Initial Disaggregation Shares of Inputs and Outputs by Industry:

Eurostat Sector	070		190		410	
Salter Sector	10	22	24	25	16	17
EC 7:						
Output Share	. 3112	. 6888	. 3005	. 6995	. 6601	. 3399
Input Share	. 0077	. 9923	. 3614	. 6386	. 6751	. 3249
Greece:						
Output Share	0	1	. 0442	. 9558	. 8194	.1806
Input Share	0	1	. 0426	. 9574	. 8413	. 1587
Spain:						
Output Share	. 0210	. 9790	. 3783	. 6217	. 6561	. 3439
Input Share	. 0055	. 9945	. 2535	. 7465	. 6692	. 3305
Portugal:						
Output Share	0	1	. 2199	. 7801	. 6496	. 3504
Input Share	0	1	. 2174	. 7826	. 6394	. 3606

Note: The large variation of input and output shares in 070 is to be expected as the input costs of crude extraction are low relative to sales value.

Source: 'Structure of Activity of Industry, Annual Inquiry', Eurostat, 4C, Luxembourg

In the second stage we used additional information from this publication such as industry purchases of raw materials, intermediate products, costs of industrial services, changes in stocks, purchases or value of fixed capital goods acquired by the enterprise, gross value added etc. along with our judgement to allocate intermediate purchases of each industry and final payments to factors where we believed that accuracy could be improved. ${ }^{5}$ Sales are based more on output shares except where better information or judgement existed, for example, where most of the output was sold to a particular industry. In each case the adjustments were made on the assumption that row and column sums
remained constant, that is, an increase in intermediate usage by one (disaggregated) sector led to a corresponding reduction in its usage of another input.

In addition, for countries for which the 59 sector European Input-Output Tables (ECR59) are available, it is possible to break down EC070 in order to arrive at Salter 10 (Oil and Gas) and Salter 22 (Petroleum \& coal products). Thus for France, Italy, Greece, Netherlands, Denmark, and the United Kingdom EC071+EC075 corresponds to SAL10 and EC073+EC050 corresponds to SAL22 in the ECR59. These figures plus the breakdown by country of output from Eurostat 4C, cited above, were used to achieve the final disaggregation. In particular, this ensures that the sales row is 'more' correct for SAl 10 and Sal22, than for the other disaggregated sectors.

5.2 The Agricultural sector

The agricultural sector posed a particular problem. The EC is currently constructing a detailed input-output table of the EC agricultural sector known as SPEL, however, it will not release this information until its study is completed. Insofar as it is possible, we have followed the SPEL methodology in the construction of the agricultural sector. ${ }^{6}$

In order to achieve the disaggregation necessary to complete the Salter model, we initially disaggregated the Eurostat 010 sector using the output shares in table 4 which are derived from the original Eurostat data on agricultural crop, animal, forestry and fishery production (Eurostat Series 5A,B,C) for 1980 .

Table 4: Preliminary Agricultural Salter Sector Shares of Eurostat Sector 010 (before redistribution of inputs and outputs within sectors):

Salter Sector
1
2
3
4
5
6
7
8

Output:
.0026789
.2922
.0654
.0448
.0008
$\begin{array}{ll}.0008 & .0394 \\ .5096 & .0576\end{array}$
.022 . 162
.06252

Imports:
.0104
.505
.048
.0956
.0394
.082

Sources:

Output: Based on estimates derived from Table A.1.0.0 Eur 12 Production, Origin of Income and Fixed Capital Formation, Economic Accounts for Agriculture and Forestry, Eurostat 5C, and Section III, Agricultural Statistical Yearbook, Eurostat 5A.
Imports: Based on Table 1A 14, Agricultural Statistical Yearbook, Eurostat 5A, and "Statistics of Foreign Trade" Series B, O.E.C.D., Paris.

We then refined these shares across sales and inputs to derive our input-output figures using information contained in Eurostat's input accounts such as feed and fertilizer accounts (Eurostat 5C) and information from "Output and Utilization of Farm Produce in the United Kingdom," Annual publication, Department of Agriculture, U.K. 7 By adding the relevant subsectors within the aggregation (crops, animal production etc.) back together, we were able to do a rough cross-check of our figures by reference to the agriculture sectors in WALRAS, the OECD general equilibrium model of agriculture. Of necessity, because of the constraints of time and the fact that the SPEL team has a wider range of information sources available to it, our Calculation data are more crude and the Residual data checks less rigorous, however, we are content that the input-output
coefficients are reasonably accurate. We are less content with the disaggregation of the tax/subsidy revenue matrix, which is considerably more ad hoc. The distribution of factor rewards between land, labour and capital also requires more work. Given the data to hand, it was not possible to break down returns to factors by sectors and the figures shown are based on aggregate returns. This is not altogether inappropriate as the political pressure which underlies the subsidies and pricing of agricultural output in the Common Agricultural Policy serves to equate returns to factors across agricultural sectors. A rough comparison with the figures for the agricultural sectors in the WALRAS model confirms this assumption for land and capital, however, the labour income figures differ significantly.

6. EC7 and Country Specific Comments

6.1 EC7 Table Manipulations:

The consolidated EC7 does not provide a detailed breakdown of the Gross Value Added term. However, the returns to land, labour and capital are available in the published tables in Eurostat Input-Output Tables, publication 2C, with the exception of France and Italy, which do not provide the data, and those of Belgium which are published separately. Using this information and capital/labour ratios from the EC-Structural Data Base (BDS) for France and Italy and the additional information on taxes (see below), it is possible to disaggregate the Eur7 gross value added into its component parts. The key assumption employed in separating value added for France and Italy was that their capital/labour ratio lies within the Cone of Diversification for

European production and, thus, as a variety of trade models would predict, their wage/rental ratios are very similar to the European average. Thus, the breakup of the factor payments component of gross value added depends upon the European wage/rental ratio, the European capital/labour ratio and the capital/labour ratio in the country in question. These ratios were derived from capital stock and employment data reported in the Eurostat BDS (database) under "Capital Stock data for the European Communities" and "Occupied Population/Wage-Salary earners by Sector for the European Communities" and are presented in Table 5 while the average share of capital and labour in each sector is presented in Table 6.

The individual country data for non-deductible Vat, taxes on production, non-commodity taxes and subsidies are also not provided in the aggregated EC7 table, however, some or all of these are available for countries in the Eurostat 2 C Input-Output Tables, 1980, see appendix 2. From these tables it is possible to check that the taxes derived in the commodity tax revenue matrix (described in Section 3 above) are of about the right order of magnitude. It is also possible to derive estimates of noncommodity indirect taxes net of subsidies either from the countries I-O table where it was provided, or by using the `Structure and Activity of Industry-Annual Inquiry Eurostat 4C, Price-Waterhouse country tax reports or Felonis (1987).

Table 5 : Capital/Labour Ratios for France and Italy relative to Average European Capital/Labour Ratios.

Sector	Fra.	Ita.
010	1.2	0.81
030	1	1
050	1	1
070	1	1
090	1	1
110	1	1
130	1.14	1.01
150	0.99	0.73
170	0.68	1
190	1.41	0.82
210	1	1
230	1.31	0.86
250	0.74	0.98
270	0.85	1.23
290	0.85	1.23
310	1.16	0.77
330	1.16	0.77
350	1.16	0.77
370	1.16	0.77
390	1.16	0.77
410	1.5	0.47
430	1.5	0.47
450	1.1	0.87
470	0.99	0.86
490	0.99	0.86
510	0.88	0.50
530	1.42	0.77
550	1.23	0.87
570	1.4	0.83
590	1.34	0.88
610	1.21	0.63
630	1.21	0.63
650	1.21	0.63
670	0.96	1.04
690	1.4	0.83

Source: Eurostat Database, BDS.

Table 6 : Average Share of Labour and (Gross) Capital in Gross Value Added at Factor Cost from Denmark, Germany, Netherlands, United Kingdom and Belgium.

	Lab	Cap
B010	.25	.75
B030	.85	.15
B050	.68	.31
B070	.09	.91
B090	.46	.54
B110	.87	.13
B130	.90	.10
B150	.69	.31
B170	.72	.28
B190	.77	.23
B210	.84	.16
B230	.70	.30
B250	.81	.18
B270	.86	.14
B290	.98	.02
B310	.46	.54
B330	.58	.42
B350	.61	.39
B370	.61	.39
B390	.65	.35
B410	.79	.21
B430	.73	.27
B450	.83	.27
B470	.70	.30
B490	.74	.26
B510	.76	.24
B530	.65	.35
B550	.63	.37
B570	.64	.36
B590	.56	.44
B610	.70	.30
B630	.56	.44
B650	.56	.44
B670	.62	.38
B690	\star	\star
B710	.34	.63
B730	.03	.97
B750	.83	.17
B770	.37	.63
B790	.62	.38
B810	.97	.03
B850	.92	.08
B890	.92	.08
B930	.92	.08
B990	.66	.34

Note: See Section 6.13 for details of Sector 690.

[^1]
6.2 Spain:

Valuation of flows: The published Eurostat table is valued at producer prices including taxes on products. The commodity revenue table and the non-commodity taxes are derived allowing for the 2.5% cascade turnover tax in operation in 1980 (Ministry of Finance Source) and the information provided on tax and subsidies in the primary input table.

6.3 Portugal:

The table published by Eurostat is in basic prices. Portugal operated a Sales Transactions Tax which is similar to VAT in the sense that raw materials were eligible for a tax rebate, however, other inputs and services were taxed at rates varying from 10% to 60\%. In our calculations we used the rates quoted in the priceWaterhouse study of Portugal, making allowances where appropriate for primary raw materials. The commodity revenue matrix is derived using these tax levels and the information on net production taxes supplied in the primary input table. The noncommodity taxes are not published, however, we derive an estimate based upon the rates quoted in the Price-Waterhouse country survey and indirect tax totals, fees, stamp duties and licences in the national and local income accounts.

6.4 Greece:

The table supplied for Greece is in producer prices. The commodity revenue matrix and the non-commodity indirect taxes are derived using the cascade turnover tax levels in operation in 1980 (10\% on all transactions except inputs of raw materials -

Source: Price Waterhouse) and the information on net production taxes supplied in the primary input table.

6.5 Ireland:

The table supplied was for 1982. The figures have been deflated by the producer price index and by the overall growth rate of output between 1980 and 1982 (26% in total). Obviously this is extremely crude but given that Ireland accounts for only . 8% of European G.N.P., this adjustment is relatively insignificant and the potential improvement in the table would not have justified the time necessary. The tax matrix is based upon VAT rates in operation in 1980 (which varied from a zero rating for food to 35% for 'luxury' items - see Price-Waterhouse report on Ireland) and tax totals in the input-output table.

6.6 Luxemburg:

As was noted in the introduction, no Input-Output table for Luxemburg exists. It has two important industries; Financial Services and Steel Products, however, at approximately, . 4\% of European output each, they are still relatively insignificant. Nevertheless, final consumption, value added and the diagonal element of the matrix were adjusted to incorporate these industries. Using the rule that only coefficients where the sales/input figure would change by more than . 18 of total European input/output for that sector as a result of the inclusions, allowed us to ignore the need for any further adjustment.

6.7 Duty

Total duty by commodity is available from the original tables. While many EC tariffs are the same for all countries due to the MFN clause in the GATT, there is, however, a large number of products where countries in each of the Salter regions faced preferential tariff rates for some goods at that time, depending upon the historical links a particular country had with member countries of the EC. It would be a major project in itself to determine the exact allocation of these duties by source. Accordingly, duties have been allocated according to regional trade shares with Europe (see table 7).

There was one area of confusion in relation to the implementation of the model. The model presented to the Industries Commission included duties in the import tax matrix. This, apparently, had not been the original intention. Unfortunately, to recover the pure taxes on imports would then have required a significant reworking of the calculations. Given the relative unimportance of product taxes in most sectors in the EC (as was noted in Section 3), the recommendation was that they could be safely ignored. If it was deemed to be sufficiently important to warrant inclusion, a quick estimate can be obtained by employing the same tax coefficients as those in the domestic sector. Note that the rates are not constant across the sales of a particular sector, as a particular category can contain different amounts of goods taxed at different rates.

Table 7: Salter Region Shares of EC Imports

	Aus	NZ	Jap	US	Can	ASEAN	Row
1	0.035	0	0.619	0	0	0.104	0.242
2	0.007	0.0055	0.001	0.46	0.005	0.123	0.763
3	0.0006	0	0	0.488	0.489	0	0.0024
4	0.007	0	0.0025	0.796	0.04	0.099	
5	0.35	0.234	0.002	0.02	0.0004	0.087	0.1455
6	0	0	0	0.123	0.014	0	0.863
7	0.002	0.0004	0.0034	0.078	0.084	0.114	0.2854
8	0.007	0.604	0.034	0.08	0.122	0.133	0.153
9	0.099	0	0	0.396	0.009	0.006	0.49
10	0	0	0.00005	0.006	0.0006	0.0014	0.9974
11	0.059	0.0004	0.010	0.16	0.073	0.047	0.647
12	0.037	0.186	0	0.145	0.023	0.038	0.571
13	0.013	0.43	0	0.007	0.024	0	0.526
14	0.0004	0.0002	0.002	0.397	0.029	0.098	0.4734
15	0.002	0	0.0008	0.213	0.028	0.12	0.6362
16	0.022	0.015	0.0146	0.006	0.003	0.091	0.8484
17	0.0001	0.0002	0.01	0.038	0.006	0.458	0.5123
18	0.004	0.027	0.0007	0.086	0.02	0.209	0.6533
19	0.002	0.0003	0.005	0.085	0.07	0.13	0.7077
20	0.0002	0.00005	0.0083	0.089	0.083	0.00866	0.8108
21	0.002	0.0009	0.04	0.29	0.032	0.069	0.566
22	0.0003	0	0.00012	0.013	0.0059	0.025	0.9557
23	0.0007	0	0.025	0.056	0.003	0.057	0.8583
24	0.0086	0	0.074	0.063	0.019	0.019	0.8164
25	0.003	0.0009	0.088	0.227	0.017	0.12	0.5441
26	0.0005	0.0002	0.247	0.202	0.004	0.011	0.5353
27	0.002	0.0005	0.16	0.407	0.014	0.068	0.3485
28	0.003	0.0004	0.18	0.244	0.01	0.226	0.333

Note ROW is almost always dominant due to the high percentage of EFTA/EC trade. Also note Korea is included in ASEAN.

Source: 'Statistics of Foreign Trade, Series B, OECD, Paris.

6.8 Freight

We are not aware of any publicly available freight data by sector. It would be possible to calculate approximate freight cost for each sector by comparing $F O B$ and CIF prices in OECD reports for each of the component SITC categories that form parts of the Salter Sectors. This, however, could take several weeks to a month to complete and would not be feasible in the time
allotted to the project. Thus the figures reported are the trade figures for each region calculated by the IMF, using the CIF/FOB conversion factor (see table 6) on aggregate trade bundles for balance of payments reconciliation purposes and published in International Financial Statistics for 1980.

Table 6: CIF/FOB Conversion Factors.

Australia	1.106
New Zealand	1.085
Japan	1.091
United States	1.048
Canada	1.030
Korea	1.079
Asean	1.10
ROW	1.12

Source: International Financial Statistics

6.9 Income Tax and Transfer Payments

The figure employed in the study is the total of income taxes including social welfare taxes reported in Table 8 (next page) of individual countries National Accounts, OECD, for 1980.

6.10 Capital stock

There are two possible ways of calculating the capital stock for use in this project. One method would be to use a set of tables published by Eurostat, "Capital Stock Data for the European Communities", Eurostat BDS (Statistical Data Base), (Estimation Methodology attached), which provides figures for the capital stock in 6 countries (Germany, France, Netherlands, United Kingdom, Italy and Belgium) for as many as 26 of the EC R44 sectors, though the figure for most countries is closer to 16 .

Table 8: Income Tax and Transfer Payments

	Local currency			ECU	
	$\begin{aligned} & \text { Total } \\ & \text { Transfers } \end{aligned}$	Direct Income Tax	$\begin{aligned} & \text { Social } \\ & \text { Security } \\ & \text { Tax } \end{aligned}$	Transfers	Total Tax
France (mil FR)	654948	175839	507642	112534.02	117436.60
Belgium (mil BFR)	734638	631633	437669	17961.81	263777.49
$\begin{aligned} & \text { Denmark } \\ & \text { (mil KR) } \end{aligned}$	62773	96343	3168	8016.99	12708.91
Germany (mil DM)	252640	180010	248130	100253.97	169896.83
$\begin{aligned} & \text { Greece } \\ & \text { (mil Dr) } \end{aligned}$	159508	736222	1353890	2688.94	3835.33
Ireland (mil IR£)	1390.8	1153.3	656.9	2120.12	2759.45
$\begin{aligned} & \text { Italy } \\ & \text { (Bil Lir) } \end{aligned}$	55653	37788	43753	29446.03	43144.44
Luxembourg (Mil LFR)	33652	23176	18871	828.86	1035.64
Netherlands (Mil Guil)	92120	50680	61220	33376.81	72861.16
Spain (bil Pes)	2284.1	1070	1815.3	2290.97	2890.76
Portugal (Mil Esc)	134337	77726	109826	2049.38	2861.17
UK (UK £)	28178	31596	13944	47120.40	76153.85
			Totals	358688.30	531961.66

Source: "National Accounts", Detailed tables, 1976-1988, Vol.II, OECD, Paris, France.

However, given that the primary use of this variable is the
calculation of depreciation for incorporation in the model, the resultant figures depend upon the accuracy of the aggregate depreciation figure employed. In contrast, Belgium, Germany, The Netherlands, and Greece which constitute about 40% of the G.N.P. of the above group of 6 , all provide a depreciation figure for each of their reported sectors. For the purpose of this study therefore, this was regarded as superior. For the remaining countries, the figure is calculated by sector by calculating the share of depreciation by sector in Gross Value added in the four countries (noted above) for which data is available and in the case of Italy and France the derived numbers are compared (and forced to conform with) the net and gross capital stock figures for the relevant sectors reported in "Capital Stock Data for the European Communities", Eurostat BDS. Using this comparison it was found to be a reliable measure of depreciation. For sectors and countries where the $E C$ does not report a capital stock, the average share of depreciation in Gross Value Added at Factor Cost in each sector of the four reporting countries was calculated. These are reported in table 9. It was then assumed that depreciation accounted for the same percentage share of Gross Value added at Factor Cost in the remaining seven countries.

The total capital stock, for updating purposes, can be obtained by multiplying the figures for the consumption of fixed capital stock (depreciation) by the inverse of the depreciation rate discussed below.

Table 9: Share of Depreciation in Gross Value added at Factor

B010	.26
B030	.09
B050	.26
B070	.12
B090	.35
B110	.13
B130	.19
B150	.18
B170	.19
B190	.08
B210	.08
B230	.13
B250	.08
B270	.13
B290	.09
B310	.06
B330	.16
B350	.13
B370	.22
B390	.19
B410	.09
B430	.07
B450	.09
B470	.11
B490	.12
B510	.08
B530	.05
B550	.04
B570	.08
B590	.12
B610	.19
B630	.28
B650	.13
B670	.21
B690	.30
B710	.06
B730	.39
B750	.04
B770	.10
B790	.08
B810	.04
B850	.08
B890	.08
B930	.08
B990	.13
6	.

[^2]
6.11 Marginal Tax Rate

The Marginal Tax rate is a weighted average of the average marginal tax rate in each of the twelve countries. The marginal tax rate for each country is based upon the marginal tax rate faced by the earner of an average wage/salary of domestic manual and non-manual worker in each country. The wage/salary is from the Eurostat Revue, 1A, for 1984 (last complete listing) adjusted for the nominal growth rate of G.N.P.. The marginal tax rate is the rate operational in 1985, inclusive of local, social security and special levy taxes, which we calculate such a worker would face on his/her marginal taxable income after adjusting for allowable deductions as reported in 'Individual Taxes - A Worldwide Summary 1985' published by Price Waterhouse. The EC12 figure is the sum of each country's marginal rate by its percentage share in EC GDP as reported in EC National Accounts 'Eurostat Revue,' 1A.

Table 6: Marginal Tax Rates by Country (1985):

Belgium	.602
Denmark	.28
France	.40
Germany	.34
Greece	.3425
Ireland	.42
Italy	.432
Luxembourg	.23
Netherlands	.41
Portugal	.31
Spain	.3063
United Kingdom	.34
ECl2	.3646

[^3]
6.12

Depreciation Rate

Given that depreciation is calculated explicitly in this model, the depreciation rate is only of importance if capital stock rather than depreciation is required. As was stated above, the depreciation figures are believed to be more accurate than the capital stock figures for the purpose of this study. As such, the common 10% rule-of-thumb depreciation rate may be used, however, a depreciation rate based upon the weighted average of depreciation as percentage of capital stock for Belgium, Germany, Greece, the Netherlands and the United Ringdom (for which figures are available) suggest a lower depreciation rate of approximately 5\%. However, the sectors included in this estimate are biased towards the manufacturing sectors and incorporating the service sector would lead to some upward movement in this figure.

6.13 Other significant alterations to the table

In a number of sectors the return to capital (net of depreciation) is negative in the primary inputs table. In the implementation of the model these losses were treated as temporary changes in stocks with an appropriate adjustment for average long run return to capital. The adjustment required is not significant except in the case of Salter 32 (Sector 690 of the European R44 table - Services of Credit and Insurance institutions) which had a negative return on capital in 1980 reflecting short run losses and exceptional bad debt provision. Within the financial services sector it is not unusual for the sector as a whole to experience bad years, depending on the state
of the economy as a whole, both within Europe and in markets where they have lent significant amounts. Accordingly it is appropriate to adjust this sector's profit figures to reflect a 10 year average profit rate (about 10%) on capital and viewing the temporary losses as a (financial) stock adjustment. The necessary adjustments on the row sum is therefore accommodated as a stock change in which assets are written off in the relevant period. This is the only sector in which the stock adjustment column, however, is a relatively large percentage of total sectoral output.

No data exists for Sector 34, Other Services: Ownership of Dwellings and while totals can be obtained for some countries, no input-output estimates are available. In the case of Ireland, this sector can be treated as a residual, however, the figures for this sector should be regarded as unreliable and in need of further work.

6.14 Updating

The update procedure for the EC region was conducted by Andrew Welsh of the Industry Commission and followed the procedure outlined in 'Updating ndp' in Chapter 3 of "Salter: A General Equilibrium Model of the World Economy."

Footnotes

1. National Accounts ESA, Input-Output Tables 1980, Belgium (available from Eurostat, Section DG34/B, on request).
2. European trade figures can be distorted by the presence of entrepot trade, that is, goods shipped through large ports, such as Rotterdam, and placed in storage or bonded warehouses for trans-shipment either to other EC countries or to the rest of the world.
3. P.xii, Introduction to "National Accounts ESA, Input-Output Tables, 1980, Eurostat 2C.
4. See sections 6.2-6.4 for details.
5. I regret that I did not keep copies of the appropriate rows and columns before the redistribution took place, however, the redistribution ought to be obvious from a replication of the data using the output shares indicated. I am willing to answer queries relating to the subsequent implied redistribution with anyone replicating these tables, should the redistribution not be immediately obvious from the 'Structure of Industry Data'
6. see Wolf (1990)
7. A similar qualification to footnote 5 applies.

References and Sources:

Primary Input-Output Table Sources:

"National Accounts ESA, Input-Output Tables, 1980", Eurostat 2C, Luxembourg, 1986.
"National Accounts ESA, Input-Output Tables 1980 for Belgium", Eurostat DG34 working paper, Luxembourg, 1990.

Milanos, Dr. "Input-Output Tables for Greece for 1980 ", diskette supplied by kind permission of Prof. Maria Constantopoulos, Director General, Centre of Planning and Economic Research, 22 Hippokratous Street, GR. 106 80, Athens, Greece.

Henry, E, "Input-Output tables forIreland for 1980", Spreadsheet supplied by Dr.Henry, Central Statistics Office, Earlsfort Terrace, Dublin 2.
"National Accounts", Detailed tables, 1976-1988, Vol.II, OECD, Paris, France.

Agricultural Sources:

Burniaux, J.M., F. Delorme, I. Lienert and J.P. Martin (1990), "Walras- A Multi-Sector, Multi-Country Applied General Equilibrium Model for Quantifying the Economy-Wide Effects of Agricultural Policies." Working Paper, No.84, OECD, Paris.
"Yearbook of Agricultural Statistics", Eurostat 5A, Luxembourg.
"Economic Accounts: Agriculture and Forestry", Eurostat 5C, Luxembourg
"Crop Production, Quarterly Statistics" Eurostat 5B, Luxembourg.
"Animal Production, Quarterly Statistics" Eurostat 5B, Luxembourg.
"Feed Balance Sheet", Eurostat 5C.
"Output and Utilization of Farm Produce in the United Kingdom", Annual Accounts, Dept. of Agriculture, London, U.K.

Wolf, W. (1990), 'The Base Model', SPEL working paper, Univ. of Bonn.

Industrial Sources:
"Structure and Activity of Industry, Annual Inquiry", Eurostat 4C, Luxembourg.
"Capital Stock Data (by Sector) for the European Communities", BDS, Eurostat, Luxembourg.
"Occupied Population/Wage-Salary Earners (by Sector) for the European Communities", BDS, Eurostat, Luxembourg.

Trade Sources:
"International Financial Statistics", Internatioanl Monetary Fund Yearbook, Washinton, D.C., U.S.A..
"Statistics of Foreign Trade", O.E.C.D., Series B, Paris, France.

Additional Tax Sources:
'Country' Surveys - Various, Price-Waterhouse, London.
Individual Taxation - A Worldwide Survey, Price-Waterhouse, London.

Appendix 1: 1980 Input-Output Table for European Commanity in current producer prices net of deductible value added tax.

Key to Tables:
Intermediate Input-Output Table:
S(i): Salter Sector, $i=(1-34)$, for more details see Appendix 2. B990: Total

Table of Primary Inputs:
E010: Gross Wages and Salaries
E020: Employers' Social Contributions
E030: Net Operating Surplus
E070: Net Value Added at Factor Cost
E080: Consumption of Fixed Capital
E090: Gross Value Added at Factor Cost
E111: Taxes linked to Production
E112: Non-Commodity Taxes
E180: Net Value Added at Market Prices
E190: Gross Value Added at Market Prices
E290: Actual Output at Producer Prices
Additional Infornmation:
E390 Total Transfers at approximate Factor Prices
E410 Subsidies linked to Exports
E490 Distributed Output at Producer Prices
E590 Total Imports c.i.f. of Similar Products
E690 Total Taxes Linked to Imports of Similar Products
Imp VAt VAT on Imports
Fin Imp Total Imports of Similar Products at ex-customs Prices
Dom VAt Total Domestic VAT
Final Total Resources
Table of Final Uses:
F01: Final Consumption of Households
F02: Collective Consumption of General Government
F03: Collective Consumption of Private Non-Profit Institutions
F09: Final Consumption
F19: Gross Fixed Capital Formation
F29: Changes in Stocks
F49: Final Exports of Goods and Services
F89: Final Uses
F99 Total Uses

Salter 1 Salter 2 Salter 3 Salter 4 Salter 5 Salter 6 Satter 7 Salter 8 Salter 9

S1	56.00	0.00	0.00	2.89	0.05	33.64	1.42	4.03	0.14
S2	0.00	7018.00	1.00	3.00	5.63	3569.11	154.80	439.93	15.11
S3	0.00	1.00	1565.50	1.36	1.26	802.85	34.65	98.46	3.38
S4	2.89	3.00	1.36	1065.00	0.86	737.00	23.73	67.45	2.32
S5	0.05	0.00	1.26	0.86	0.02	0.00	0.42	1.20	0.04
S6	0.00	9.00	1.00	0.00	9.82	6330.00	219.73	767.24	26.36
S7	1.42	6.40	4.69	3.77	0.42	34.73	61.73	33.12	1.14
S8	4.03	0.00	0.21	2.43	1.20	764.07	33.12	94.13	3.23
S9	0.03	3.62	0.81	0.56	0.01	6.32	0.27	0.78	330.81
S10	0.58	63.06	14.11	9.67	0.17	109.97	4.75	13.49	5.57
S11	1.22	133.04	29.78	20.40	0.36	232.03	10.02	28.47	309.24
S12	0.82	89.25	19.98	13.68	0.24	155.66	6.72	19.10	0.00
S13	2.45	267.00	59.76	40.94	0.73	465.66	20.10	57.13	0.00
S14	53.61	5848.01	1308.90	896.62	16.01	10199.00	440.30	1251.28	1.81
S15	0.49	53.32	11.93	8.18	0.15	92.99	4.01	11.41	6.68
S16	0.64	70.32	15.74	10.78	0.19	122.65	5.29	15.05	11.85
S17	0.33	36.23	8.11	5.55	0.10	63.18	2.73	7.75	6.11
S18	0.97	7.10	1.59	1.09	0.02	12.39	0.53	1.52	11.54
S19	0.61	66.07	14.79	10.13	0.13	115.22	4.97	14.14	101.11
S20	1.05	114.38	25.60	17.54	0.31	199.48	8.61	24.47	41.90
S21	25.82	2816.67	630.43	431.85	7.71	4912.30	212.07	602.67	288.92
S22	13.93	1519.40	340.07	232.95	4.16	2649.85	114.40	325.10	135.26
S23	1.58	172.39	38.59	26.43	0.47	300.66	12.98	36.89	174.15
S24	0.22	24.24	5.43	3.72	0.07	42.28	1.83	5.19	73.85
S25	1.58	172.55	38.62	26.46	0.47	300.94	12.99	36.92	496.88
S26	0.77	83.99	18.80	12.88	0.23	146.48	6.32	17.97	28.93
S27	4.94	538.46	120.52	82.56	1.47	939.07	40.54	115.21	1378.13
S28	0.03	2.85	0.64	0.44	0.01	4.97	0.21	0.61	15.16
S29	4.97	542.19	121.35	83.13	1.48	945.59	40.82	116.01	902.28
530	2.71	295.59	66.16	45.32	0.81	515.52	22.26	63.25	764.77
S31	23.11	2520.66	564.17	386.47	6.90	4396.05	189.78	539.34	1052.88
S32	13.66	1490.20	333.53	228.48	4.08	2598.92	112.20	318.85	764.73
S33	0.74	81.25	18.18	12.46	0.22	141.69	6.12	17.38	68.78
S24.	几.32	$3 . .5 ¢$	7.9\%	¢ 4.	n.12	6.0	2fR	7. $\mathrm{K1}$.	? 0 R
8990	220.69	24084.82	5390.57	3693.02	65.94	42002.28	1813.12	5153.15	7032.1

Satter 10		Saller 11	Softer 12	Satler 13	S14	S15	S16	S17	S18
S1	0.00	0.03	71.43	56.22	75.76	11.80	2.36	1.21	0.25
S2	0.09	3.53	3450.00	7132.45	10962.00	2263.92	254.00	129.91	0.00
S3	0.02	0.79	1769.00	1372.40	1549.59	469.06	57.54	29.64	0.00
S4	0.01	0.54	610.00	940.12	1201.84	783.61	39.41	20.30	0.00
S5	0.00	0.01	0.00	0.00	0.00	3.22	53.98	34.99	0.08
S6	0.16	6.15	33459.00	11185.37	8434.78	437.49	398.53	198.61	86.95
S7	0.01	0.27	0.00	0.00	0.00	0.00	19.35	9.97	2.08
S8	0.02	0.75	0.00	312.15	6074.00	51.28	55.00	28.34	5.91
S9	0.37	179.14	1.84	3.47	42.55	10.75	19.80	10.20	2.97
S10	34.47	103.84	20.02	25.77	89.87	30.71	29.91	15.41	5.05
S11	11.22	48170.89	9.13	81.36	154.95	92.77	7.91	4.07	32.92
S12	0.05	0.00	2045.06	19.48	1052.27	11.39	60.40	34.59	1232.41
S13	0.00	0.40	99.96	979.93	2761.42	59.36	4.00	2.60	1.97
S14	0.87	10.06	1800.32	807.34	19127.58	1428.35	39.67	20.66	8.34
S15	1.71	45.43	41.05	12.93	343.60	2068.80	13.41	6.91	5.90
S16	0.44	32.86	14.75	4.36	103.19	24.49	13639.04	7022.03	361.67
S17	0.23	16.93	7.60	2.25	53.16	12.62	7013.52	3615.54	185.25
S18	0.07	5.56	1.80	1.77	3.85	0.01	359.35	186.77	3078.82
S19	0.63	139.92	56.49	43.72	234.39	191.47	60.50	31.16	92.77
S20	7.17	339.37	447.76	681.19	2959.03	1359.92	694.50	357.77	357.21
S21	44.99	2098.62	482.67	682.09	2833.60	912.12	4243.71	2188.96	1550.36
S22	840.26	7008.78	483.34	619.27	2190.15	738.92	719.13	370.46	121.48
S23	1.48	1723.86	87.59	135.48	623.20	1034.87	35.13	18.10	29.23
S24	3.79	265.73	44.31	39.03	239.97	118.73	37.66	19.40	31.39
S25	26.54	1787.84	298.12	262.58	1614.52	798.83	256.87	130.97	211.41
S26	0.43	150.80	14.41	14.99	33.77	13.32	7.20	3.71	2.08
S27	25.59	1782.52	145.56	99.34	534.56	276.85	482.29	248.45	86.73
S28	0.59	39.31	6.53	5.29	54.83	6.29	42.84	22.07	11.21
S29	32.36	6499.54	393.01	340.17	1315.57	403.09	906.24	462.10	114.86
530	31.64	341.49	69.36	54.42	254.11	150.00	152.19	78.40	49.68
S31	173.46	12796.09	3807.80	1104.82	8126.11	3069.45	3862.27	1989.66	1168.74
S32	94.38	3658.71	1195.96	825.05	4854.17	3313.94	2968.88	1512.81	793.10
533	5.61	320.61	97.04	87.27	412.68	163.53	330.13	167.93	110.86
S34	11.7.	35.92	419.3\%	¢4.24.	30.3	1,91. R3	$5 \% 75$	31.0\%	$17.5 R$
8990	1350.43	87566.29	51450.27	27996.30	78341.40	20502.80	36925.49	19004.77	9759.2

519

S1	10.06
S2	367.65
S3	245.50
S4	0.00
S5	3.00
S6	410.55
S7	2486.87
S8	234.69
S9	5.07
S10	31.49
S11	479.75
S12	17.82
S13	0.99
S14	25.65
S15	17.29
S16	729.21
S17	374.92
S18	167.86
S19	10193.42
S20	470.29
S21	3369.80

S22 757.90

523	534.24
524	180.91

S24 180.91
$\begin{array}{lr}\mathrm{S} 25 & 1217.77 \\ \mathrm{~S} 26 & 15.89\end{array}$
$\begin{array}{lr}\mathrm{S} 26 & 15.89 \\ \mathrm{~S} 27 & 524.26\end{array}$
S28 25.36
S29 680.75
S30 146.66
S31 3558.64
S32 2873.93
S33 337.45 S.34. 22.f7. $B 99030518.31$

S21
1.96
65.30
17.95
1.82
198.33
44.39
30.41
0.54
345.88
14.93
42.44
0.04
4.22
0.94
0.65
0.01
7.36
0.32
0.90
4513.05
0.17

18.54

0.00	0.02	0.02	0.07
0.30	2.02	2.08	8.12
0.07	0.45	0.47	1.82
0.05	0.31	0.32	1.24
0.00	0.01	0.01	0.02
0.52	3.51	3.63	14.16
0.02	0.15	0.16	0.61
0.06	0.43	0.45	1.74
1.27	8.56	32.16	23.59
7.44	50.03	57.11	84.51
2760.96	18575.55	9168.67	16203.54
0.00	0.00	0.00	0.00
0.03	0.23	0.20	1.63
0.70	4.71	1.27	18.33
3.50	23.52	34.24	71.25
14.17	95.36	565.76	188.05
7.30	49.13	291.45	96.88
3.89	26.20	103.20	106.78
91.73	617.17	666.46	928.43
100.00	672.77	571.21	2627.10
385.66	2849.65	7490.19	3056.58
204.14	1374.34	1387.31	2045.96
125.62	845.15	1267.51	1625.78
168.84	1135.98	1677.76	2284.5i
1135.98	7721.59	11287.92	15370.14
28.02	188.49	21138.93	479.69
487.91	3282.66	10573.33	41123.40
8.60	57.85	100.40	354.27
202.49	1401.97	1309.17	1980.10
58.30	392.26	427.50	665.33
904.82	6087.61	7042.96	12172.43
740.41	5206.31	7812.56	16949.82
89.22	629.69	656.42	1733.79
R10	254.89	ก®ด	7.2』
7532.02	51359.25	83670.80	126219.86

	S28	S29	S30	S31	S32	S33	S34	B990
S1	0.12	0.00	0.42	0.44	16.82	4.28	0.00	353.46
S2	12.65	0.21	46.29	47.48	1834.63	466.42	0.00	38476.69
S3	2.83	0.05	10.36	10.63	410.63	104.39	0.00	8611.11
S4	1.94	0.03	7.10	7.28	281.28	71.51	0.00	5904.41
S5	0.03	0.00	0.13	0.13	5.02	1.28	0.00	106.95
S6	22.06	0.37	80.72	82.80	3341.67	849.79	0.00	67101.35
S7	0.95	0.02	3.48	3.57			0.00	2955.23
S8	2.71	0.04	9.90	10.16	392.55	99.80	0.00	8275.39
S9	0.86	9537.82	9.91	33.35	65.31	210.04	0.00	15632.38
S10	4.84	550.70	165.55	989.97	233.92	300.65	10.75	4626.07
S11	1518.84	695.73	8201.68	1104.34	142.52	548.13	3.39	112232.27
S12	24.97	0.00	1.88	137.14	5925.51	1584.34	0.00	12786.96
S13	0.74	0.01	0.80	57.63	2679.82	966.05	0.00	8720.75
S14	0.24	1.09	31.17	707.84	7586.88	1679.01	0.00	54882.36
S15	3.38	22.56	64.92	348.99	16892.93	623.73	0.00	21380.85
S:6	1:5.18	13.81	490.32	1280.75	1299.75	831.24	0.00	28061.81
S17	59.85	7.11	252.59	659.78	669.57	428.22	0.00	14439.77
S18	:2.11	9.06	13.57	197.45	276.16	192.04	0.00	4868.77
S19	229.51	55.77	10117.59	1370.33	1027.65	1173.18	0.00	28623.59
S20	595.77	285.66	1175.02	10672.66	12044.79	5791.79	264.53	72412.70
	1164.77	349.23	8638.12	7498.77	6614.60	9403.83	55.07	46916.89
S22	116.47	11091.83	3978.04	23787.97	5566.28	7245.05	22.67	113974.02
S23	144.58	80.10	37463.30	874.50	906.84	845.57	18.47	61576.47
S24	59.16	112.02	1503.26	332.64	197.22	407.07	0.00	9696.96
S25	398.04	753.63	10186.15	2271.09	1330.95	2749.21	29.14	65519.10
S26	19.88	14.71	147.75	14435.53	1367.12	10080.65	0.00	48639.11
S27	365.27	1921.29	9591.70	5924.56	5180.10	11274.34	0.00	102311.61
S28	750.32	116.61	170.72	733.18	1784.73	671.20	0.00	5176.27
S29	139.86	7087.19	1141.56	7126.93	6859.05	5455.60	52.30	58525.99
530	46.27	1960.61	19534.22	4948.44	15825.55	10860.31	0.00	59831.62
S31	1008.27	1903.40	17025.95	50992.86	20594.43	12309.10	21.35	207061.04
S32	900.65	2432.13	16627.96	41698.37	142320.70	31296.84	92.69	320972.15
S33	105.14	225.20	1089.96	6681.86	10490.03	4799.01	11.82	31686.77
S34.	n20	. 34.37	1.1.27,	67. ¢5	¢2.55	23.4R	n Ω R	2152n9
B990	7829.46	39262.33	47895.79	185096.96	274218.57	123345.16	582.19	

S1	78.27	0.00	0.00	(78.27	$7 \quad 1.78$	9 2.67	711.93	$3 \quad 94.66$	- 448.12
S2	8537.45	0.00	0.00	8537.45	- 194.45	382.08	1301.31	10415.29	48891.99
S3	1910.85	0.00	0.00	1910.85	- 43.52	86.15	- 291.26	6 2331.78	10942.89
S4	1308.96	0.00	0.00	1308.96	629.81	153.74	199.52	21592.03	7496.45
S5	23.37	0.00	0.00	- 23.37	70.53	-0.57	3.56	$6 \quad 26.90$	133.86
S6	14889.40	0.00	0.00	14889.40	339.13	666.85	2269.51	18164.89	85266.24
S7	642.79	0.00	0.00	- 642.79	- 14.64	-29.77	- 97.98	8725.64	3680.67
58	1826.73	0.00	0.00	1826.73	31.61	38.89	278.44	42185.66	10461.06
59	1468.98	0.00	0.00	1468.98	- 0.00	656.99	104.06	2230.03	17662.41
S10	2483.58	0.00	0.00	2483.58	8.81	193.23	570.40	3256.02	7882.09
S11	137.48	0.00	0.00	137.48	427.14	1133.91	17662.39	19360.92	131593.19
S12	53250.54	0.00	0.00	53250.54	41.36	-1960.75	3581.23	54872.38	67659.34
S13	24234.76	0.00	0.00	24234.76	1.26	-711.12	3163.22	26688.13	35408.89
S14	67446.47	0.00	0.00	67446.47	27.03	-810.28	7630.74	74293.95	129176.31
S15	34197.64	0.00	0.00	34197.64	6.21	1136.94	3462.04	38802.84	60183.69
S16	33432.55	0.00	0.00	33432.55	265.00	2406.85	6538.90	42643.30	70705.11
S17	17259.09	0.00	0.00	17259.09	136.52	1249.65	3327.88	21973.13	36412.91
516	11655.02	0.00	0.00	11655.02	36.59	905.47	2655.56	15252.65	20121.42
S19	20072.96	0.00	0.00	20072.96	7013.69	705.73	2359.86	30152.24	58775.83
520	16865.91	0.00	0.00	16865.91	47.06	791.70	4342.82	22047.50	94460.20
501.	29152.97.	nM2	nar	29162.97	47.1. 4.2	-7.0189	. 377.91 .99	617.93.49	20イGM.39
S22	58984.87	0.00	0.00	58984.87	211.47	5134.49	14126.05	78456.88	192430.90
523	4689.69	0.00	0.00	4689.69	764.43	1681.49	5565.92	12701.53	74278.00
524	735.48	0.00	0.00	735.48	3010.90	327.08	1484.87	5558.33	15255.29
S25	5035.15	0.00	0.00	5035.15	20455.79	2860.79	11074.97	39426.69	104945.79
S26	29096.36	0.00	0.00	29096.36	38825.86	5225.69	30885.56	104033.47	152672.58
STE	$175 / 5.45$	U.US	v.05	17SIS. 45	60541:86	b35.uy	¢צᅫ76.n	1byJf\%.12	
528	8868.00	0.00	0.00	8868.00	452.91	-1566.45	4618.70	12373.16	17549.43
529	27066.43	0.00	0.00	27066.43	170.27	1313.82	346.02	28896.55	87422.54
530	12330.87	203.30	0.00	12534.17	238432.88	475.17	3764.72	255206.95	315038.57
S31	277678.61	0.00	0.00	277678.61	14424.45	24159.43	43902.99	360165.47	567226.51
S32	396289.41	595.09	149.11	397033.61	17363.14	9299.71	17492.16	441188.62	762160.77
S33	41633.45	373444.13	0.00	415077.58	1207.34	2665.52	2778.52	421728.96	453415.73
534	1.35	0.00	0.00	1.35	0.00	-819.53	0.00	-818.18	1334.91
8990	1221268.05	374242.511	149.111	595659.69	425068.885	57805.8028	288604.272	2367138.654	4111632.63
	0.84	0.000 .00		0.84 0	0.010.	16		0.00 -0.	-0.44

Intermediate Imports

Salter 10 Salier 11 Salter 12 Salter 13 Salter 14 Salter 15 Salter 16 Sahter 17 Satter 18

S1	0.00	0.03	14.51	6.92	110.61	12.37	13.03	6.71	1.52
S2	0.00	1.34	635.78	336.01	6212.61	716.58	668.49	21.16	74.01
S3	0.00	0.13	62.52	31.94	507.86	57.10	56.75	30.97	7.03
S4	0.00	0.25	128.89	63.61	1013.79	113.73	116.38	61.69	14.01
S5	0.00	0.10	0.00	8.66	0.00	0.00	295.29	368.39	5.77
S6	0.00	0.15	270.28	55.79	554.03	0.00	0.00	37.17	8.44
S7	0.00	0.43	168.32	107.79	265.47	192.72	0.00	66.37	23.74
58	0.00	0.22	114.40	54.56	869.52	97.55	102.71	52.91	12.02
59	1.02	170.55	0.00	0.35	7.87	1.06	1.79	0.92	0.29
S10	123.18	16.78	1.66	2.18	9.16	2.62	2.90	1.50	0.43
S11	0.73	12931.22	7.41	3.30	89.33	17.40	0.56	0.29	0.37
S12	0.00	0.00	428.35	0.11	109.04	0.06	4.95	2.55	352.25
S13	0.00	0.00	0.56	115.99	68.16	9.51	0.01	0.00	0.00
S14	0.16	0.02	220.92	81.68	3445.85	99.67	1.88	0.99	1.18
S15	0.02	0.73	2.08	0.53	13.56	80.24	0.11	0.06	0.06
S16	0.11	3.43	0.59	0.30	11.78	5.09	1981.43	1018.76	22.50
S17	0.06	1.77	0.30	0.15	6.07	2.62	1014.72	523.60	10.90
S18	0.03	0.14	0.01	0.00	0.38	0.00	101.20	52.41	730.33
S19	0.02	8.05	0.50	0.74	4.48	24.97	2.03	1.05	6.52
S20	0.10	6.07	14.00	23.03	83.57	55.04	21.25	10.95	6.07
S21.	9.90	147.9\%	40.59	32.10	211.17.	7.2.1.9	¢38.7.	27RAR	1.3-RT.
S22	2957.70	476.43	40.06	52.46	220.45	62.97	69.70	35.90	10.37
523	0.02	205.05	3.57	3.02	25.64	38.71	4.54	2.34	0.62
? 4	0.05	11.61	1.99	1.41	7.04	3.71	3.50	1.80	3.42
S25	0.81	78.12	13.37	9.52	47.38	24.98	25.12	12.33	23.13
S26	0.11	5.60	0.07	0.12	0.28	0.37	0.05	0.02	0.02
S"2r	2.15	119.16	16.24	6.59	$36.54{ }^{\circ}$	54.56	$35.10{ }^{\circ}$	20.15	2. 59
S28	0.10	0.63	0.15	0.11	2.50	0.19	8.08	4.16	4.20
S29	0.30	59.87	4.19	2.41	10.58	2.02	8.36	4.11	1.17
530	14.91	2.73	1.16	0.14	0.79	1.28	0.50	0.26	0.76
531	8.44	644.64	46.43	22.94	118.86	48.77	138.40	71.30	47.43
S32	7.34	271.66	40.00	27.00	119.38	86.64	212.92	108.67	50.68
S33	0.01	0.36	0.08	0.03	0.40	0.26	0.30	0.15	0.02
S34	1.08	3.29	38.36	5.88	2.77	17.55	5.37	2.84	1.61
B990	3127.95	15228.53	2311.75	1056.57	14188.04	1883.14	5437.93	2800.90	1556.16

	Satter 19	ter 20 Sal	mer 21 Sat	Ater 22 Sa	ter 23 Sot	er 24 Sal	ler 25 Sall	Her 26 Sall	Wer 27
S1	0.00	0.00	7.12	20.01	0.04	0.00	0.02	0.06	- 0.09
S2	0.00	0.00	345.72	2.55	2.07	0.11	0.73	2.98	4.25
S3	0.00	0.00	32.86	60.05	0.20	0.01	0.07	0.28	0.40
S4	0.00	0.00	65.45	0.10	0.39	0.02	0.14	0.56	0.81
S5	0.00	0.00	26.97	0.04	0.16	0.01	0.06	0.23	0.33
S6	0.00	0.00	39.43	3.06	0.24	0.01	0.08	0.34	0.49
S7	975.32	89.45	110.91	10.18	0.67	0.03	0.23	0.96	1.36
S8	0.00	0.00	56.14	10.09	0.34	0.02	0.12	0.48	0.69
59	0.61	7.49	31.20	988.97	85.64	0.27	1.83	3.44	2.26
S10	2.25	6.74	117.99	73172.00	24.17	0.93	6.27	5.66	8.96
S11	28.55	21.06	862.97	20.32	115.14	373.97	2516.09	1016.27	2932.88
S12	4.4	0.00	48.04	0.00	0.00	0.00	0.00	0.00	0.00
S13	0.03	0.03	3.97	0.00	0.00	0.00	0.02	0.02	0.09
S14	0.44	3.19	309.12	3.82	1.83	0.04	0.24	0.08	0.47
S15	0.04	1.78	7.93	0.59	0.51	0.04	0.24	0.50	0.60
516	78.53	18.72	115.80	3.34	5.50	1.86	12.51	53.41	19.76
S17	40.11	9.65	59.65	1.72	2.83	0.96	6.44	27.52	10.18
S18	18.68	2.19	3.50	1.99	0.38	0.58	3.91	4.54	8.64
S19	3509.84	25.30	24.57	0.96	23.40	13.83	93.08	75.70	102.17
520	37.10	6247.66	326.66	3.32	45.33	4.38	29.46	31.51	127.56
S21.	1.0n.59	3R4.7.	7992.44	24032	$9 \Omega 1.8 \Omega$	22.74.	1.92.9R	43ヶ.23	CLRAL
S22	53.95	161.70	2835.90	749.28	584.66	22.58	152.07	135.87	215.09
S23	19.30	28.61	915.85	1.71	1106.61	8.69	58.46	71.12	117.46
234	12.53	3.66	14.89	1.35	2.88	8.49	57.10	44.20	74.28
S25	84.56	25.11	103.27	9.18	21.19	57.10	419.62	297.35	499.76
S26	0.71	0.26	3.37	2.72	2.66	0.89	6.01	3583.06	52.66
STL	58.17	51.18	18 r.99	58.16	rs. 4 S	48.54	scr:bs	$1278.64{ }^{\circ}$	rsas.j8
528	1.21	11.11	4.55	2.51	1.28	2.40	16.16	4.13	129.85
529	6.01	14.82	61.02	7.09	23.48	1.72	13.25	9.27	14.85
530	9.53	8.76	11.05	377.65	6.57	0.44	2.99	7.62	13.72
S31	82.90	142.44	351.13	207.33	143.68	22.24	149.61	173.38	470.65
S32	77.02	140.02	1048.23	174.06	165.70	34.51	245.94	480.82	1254.06
S33	0.43	1.02	0.91	0.18	0.51	0.04	0.28	0.33	0.81
S34	2.07	6.57	31.71	0.54	15.41	0.00	23.31	0.00	0.02
B990	5254.41	7433.19	16158.32	76030.15	2658.74	627.16	4335.19	7685.58	13945.20

Salier 28 Salter 29 Salier 30 Salter 31 Salter 32 Salter 33 Salier 34 Total Int. Check

S1 S2

Salter 28 S	Satter 29		ter 30 Sal	ter 31 Sall	Her 32 Salt	Her 33 Sal	34 To	otad lint. Ch	
	. 27	0.00	0.07	0.60	9.07	2.17	0.00	199.68	-0.11
13.0	. 07	0.02	3.42	28.92	55.79	9.62	0.00	9695.98	-0.10
	. 24	0.00	0.33	2.75	41.87	10.02	0.00	- 921.60	-0.36
	. 47	0.00	0.65	5.47	83.39	19.95	0.00	1835.52	-0.02
	. 02	0.00	0.27	2.26	34.37	8.22	0.00	756.48	1.04
	49	0.00	0.39	3.30	50.24	12.02	0.00	1105.92	0.41
	. 19	0.01	1.10	9.28	526.13	129.85	0.00	3110.39	0.45
	. 12	0.00	0.56	4.70	71.52	17.11	0.00	1574.40	0.52
	. 01456	6.81	1.61	5.98	10.38	22.71	0.00	2971.01	0.00
	64103	3.86	12.10	131.25	22.67	26.47	1.71	73824.13	0.19
1697.9		1.24	979.22	76.74	27.16	75.44	0.09	24351.50	0.00
	70	0.00	0.00	24.25	203.82	27.36	0.00	1208.15	0.00
	00	0.00	0.03	6.12	33.27	8.80	0.00	246.77	0.00
	06	0.02	0.80	93.71	522.88	72.91	0.00	5651.93	0.00
0.0	00	0.27	0.60	12.99	311.89	16.18	0.00	456.45	0.00
12.5		1.66	27.67	23.11	118.48	69.03	0.00	3633.37	0.00
6.4	490	0.85	14.26	11.90	61.03	35.56	0.00	1863.46	0.00
1.2	290	0.02	1.67	15.12	9.20	9.55	0.00	971.29	0.00
24.0		8.24	1947.98	45.56	53.31	61.63	0.00	6089.37	0.00
46.10		6.66	112.11	299.73	407.96	260.55	34.03	8253.38	-0.01
122.53		2.9	477.90	. 340 R	¢२7. 81.	54.27R	41.4.2	14887. 15	ana
15.4	452149	9.46	290.52	3151.49	534.30	627.41	2.01	16095.65	-0.02
11.4		0.83	1103.84	40.67	83.51	15.96	0.36	3930.46	0.00
2.7	74 1	1.23	86.91	12.47	13.65	33.28	0.00	408.34	0.00
18.4		8.25	617.25	98.81	93.65	228.65	13.12	2872.53	0.00
0.3	320	0.69	21.31	1368.13	90.85	1086.95	0.00	6252.45	0.02
45.2	1'st	Sts	IUB.b5	54.864°	nu. 25	12TS.us	u.us	136ar.19	U.us
584.5		0.99	16.68	342.68	181.77	119.40	0.00	1440.10	0.00
0.8	83118	8.49	7.02	52.44	41.75	52.44	2.22	538.60	0.00
0.7	$76 \quad 50$	0.94	517.31	117.35	325.05	278.06	0.00	1897.29	0.00
25.07		24	320.14	8445.46	795.10	575.75	0.00	13191.11	0.00
45.78		4.85	1141.90	1452.99	1495.38	1738.91	5.67	10587.55	0.12
0.05		. 31	1.87	49.18	12.23	566.01	0.01	636.29	0.00
0.02		3 14	10.40	6.18	4.90	1.96	0.00	196.94	0.00
2693.87	374664		8753.48	16829.44	7574.45	8036.52	100.65	235135.29	0.22

Final mports:

	Final: F01 Finat	2 Final	F03 Final	F09 Fina	F19 Final	
51	50.91	0.00	0.00	58.91	0.81	,
S2	2860.36	0.00	0.00	2860.36	39.32	19.80
S3	271.88	0.00	0.00	271.88	3.74	1.88
S4	541.49	0.00	0.00	541.49	7.44	3.75
S5	223.16	0.00	0.00	223.16	3.87	1.54
S6	326.25	0.00	0.00	326.25	4.48	2.26
S7	917.58	0.00	0.00	917.58	12.61	6.35
S8	464.45	0.00	0.00	464.45	6.38	3.22
s9	258.64	0.00	0.00	258.64	0.00	79.54
S10	0.00	0.00	0.00	0.00	0.00	11.13
511	50.18	0.00	0.00	50.18	8.71	823.42
S12	2036.10	0.00	0.00	2036.10	0.00	2.32
513	385.10	0.00	0.00	385.10	0.01	1.16
514	3738.08	0.00	0.00	3738.08	3.54	57.02
S15	616.01	0.00	0.00	616.01	0.00	2.68
S16	5935.32	0.00	0.00	5935.32	44.16	51.00
S17	3064.05	0.00	0.00	3064.05	22.75	26.27
S18	1776.86	0.00	0.00	1776.86	3.37	106.29
S19	1267.73	0.00	0.00	1267.73	236.08	23.87
S20	664.70	0.00	0.00	664.70	1.40	45.13
521	1719.30	0.00	0.00	1719.30	8.55	24.21
S22	5024.88	0.00	0.00	5024.88	0.00	269.80
523	427.13	0.00	0.00	427.13	23.86	198.48
324	102.02	0.00	0.00	102.02	64.37	-0.41
S25	727.05	0.00	0.00	727.05	526.00	-2.77
S26	432225	0.00	0.00	4322.26	4624.86	-87.72
S27	4538.50	0.00	0.00	4533.50	13424.48	-74.29
S28	3459.58	0.00	0.00	3459.58	222.82	139.91
529	170.70	0.00	0.00	170.70	0.00	0.00
S30	1.92	5.28	0.00	7.20	416.17	0.00
531	2210.70	0.00	0.00	2210.70	42.75	-1.71
S32	2351.76	28.03	0.12	2379.91	17.57	-0.43
S33	13.83	3.18	0.00	17.00	5.07	-4.71
S34	0.13	0.00	0.00	0.13	0.00	0.00
8990	50527.00	36.48	0.12	50563.00	19774.39	1729.75

Primary Inputs:
Salier 1 Salter 2 Salter 3 Salter 4 Salter 5 Solter 6 Satter 7 Satter 8 Salier 9

E010	59.16	6452.72	1444.24	989.33	17.67	11253.61	485.83	1380.67	9579.53
E020	49.68	5419.31	1212.95	830.89	14.84	9451.34	409.03	0.00	0.00
E030	61.09	6663.45	1491.41	1021.64	18.24	11621.12	501.70	2585.31	803.78
E070	169.93	18535.48	4148.60	2841.85	50.75	32326.08	1395.55	3965.98	10383.30
E080	54.84	5981.62	1338.80	917.10	16.38	10432.01	450.36	1279.87	1050.38
E090	224.77	24517.05	5487.39	3758.95	67.12	42758.01	1845.91	5245.84	11433.68
Freigh	0.46	49.70	11.12	7.62	0.14	86.68	3.74	10.63	18.82
Duly	0.89	97.46	21.81	14.94	0.27	169.97	7.34	20.85	11.53
ToIE111-C	1.14	124.71	27.91	19.12	0.34	217.49	9.39	26.68	32.67
E112	-2.00	-218.39	-48.88	-33.48	-0.60	-380.88	-16.44	-46.73	-1047.82
E180	165.89	18094.78	4049.96	2774.29	49.54	31557.50	1362.37	3871.68	9363.47
E190	225.26	24570.53	5499.36	3767.14	67.27	42851.27	1849.94	5257.28	10449.88
E290	457.44	49908.51	11170.41	7652.30	136.64	87039.08	3757.41	10678.56	17955.56

Addilional Infonnation

E390	-3.10	-338.62	-75.79	-51.92	-0.93	-590.55	-25.49	-72.45	-34.89
E410	-6.21	-677.87	-151.72	-103.93	-1.86	-1182.22	-51.04	-145.04	-58.26
E490	448.12	48892.03	10942.90	7496.45	133.86	85266.31	3680.88	10461.06	17862.41
E590	280.84	13636.71	1296.16	2581.52	1063.93	1555.40	4374.55	2214.28	3460.76
E690	7.02	766.13	171.47	117.46	2.10	1336.14	57.68	163.93	11.59
impvat	29.72	1442.93	137.15	273.16	112.58	164.58	462.88	234.30	26.57
FiniMp	310.55	15079.65	1433.31	2854.68	1176.51	1719.98	4837.43	2448.58	3487.33
Dom.Val	2.43	264.63	59.23	40.57	0.72	461.52	19.92	56.62	86.89
C980	760.07	64110.45	12407.35	10372.07	1310.75	87230.23	8529.01	12939.54	21403.97
Row Final	760.07	64110.45	12407.35	10372.07	1310.75	87230.23	8529.01	12939.54	21403.97

Primary Inputs:
Salter 10 Salter 11 Salter 12 Saller 13 Salter 14 Salier 15 Salter 16 Salter 17 Salter 18

E010	314.00	23964.28	6035.51	8498.62	20674.54	22014.64	20452.13	10540.40	5731.75
E020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E030	2291.98	-949.81	5943.69	3908.09	9432.21	5951.18	4171.22	2146.13	1592.30
E070	2605.98	23014.46	11979.20	12406.71	30106.76	27965.82	24623.35	12686.53	7324.04
E080	344.80	5386.29	791.27	2362.57	4555.20	7363.71	2338.50	1204.68	536.11
E090	2950.78	28400.76	12770.47	14769.28	34660.96	35329.53	26961.85	13891.21	7860.15
Freight	124.05	603.96	91.68	41.90	562.70	74.69	215.67	111.08	61.72
Duty	37.42	164.70	144.45	69.53	1421.51	232.75	319.78	164.74	182.81
TotE111-C	114.05	592.67	-960.59	-603.59	-573.08	651.17	255.98	131.87	-48.65
E112	186.90	1305.71	-132.72	-8693.07	41.93	1530.63	576.00	301.94	93.36
E180	3306.55	24781.92	10752.49	3041.17	29435.85	30182.78	24897.73	12833.09	7267.15
E190	3413.21	31067.81	11913.29	5584.06	36114.02	37818.76	28329.27	14600.84	8149.39
E290	7891.59	133862.63	65675.31	34636.93	128643.46	60204.71	70692.69	36406.51	19464.83

Additional Information

E390	-1.87	-149.09	28.48	260.54	510.24	-13.50	37.45	19.29	129.86
E410	-7.63	-2120.34	1955.54	511.42	21.62	-7.52	-25.03	-12.90	526.73
E490	7882.09	131593.19	67659.34	35408.89	129175.31	60183.69	70705.11	36412.91	20121.42
E590	76786.00	27136.57	3408.51	662.56	10156.66	1122.06	10186.88	5245.64	2957.57
E690		301.02	315.40	67.46	503.98	754.65	586.36	302.06	163.98
impvai	843.00	337.75	416.11	80.93	715.99	893.06	1353.87	697.45	415.43
FinlMp	77629.00	27474.32	3824.61	743.49	10872.65	2015.12	11540.75	5943.09	3373.00
Dom. Vat	387.04	97.25	2390.31	832.61	3559.71	4768.00	3673.91	1892.62	1423.68
?.80	85784.00	158572.07	74769.63	37574.65	144164.95	66314.03	85663.51	44117.06	24966.07
Row Final	85784.00	158572.07	74769.63	37574.65	144164.95	66314.03	85663.51	44117.06	24966.07

Primary inpuls:
Saller 19 Salter 20 Salter 21 Salter 22 Salter 23 Salter 24 Satter 25 Salter 26 Sather 27
$\begin{array}{lllllllllll}\text { E010 } & 15776.50 & 24533.68 & 47751.85 & 7444.30 & 22009.90 & 5206.26 & 36041.01 & 52183.93 & 95394.94\end{array}$ $\begin{array}{lllllllll}\text { E020 } & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$

E030
E070
E080
E090
Freight
Duty
TotE111-C
E112
E180
E190
E290

4106.12	7172.18	8743.75	54960.04	4833.76	1072.51	7328.03	-95.89	12486.61
19882.62	31705.86	56495.60	62404.34	26843.66	6278.77	43369.04	52888.04	107881.56
2026.00	3755.46	11180.16	8478.77	5779.16	580.63	3906.44	7074.12	10176.12
21908.61	35461.33	67675.76	70883.11	32622.81	6859.40	47275.48	59162.15	118057.68
208.39	294.80	640.84	3015.36	105.45	24.87	171.93	304.81	553.07
199.41	190.89	645.80	900.62	52.60	12.70	85.45	294.29	582.23
126.47	457.65	2138.62	2767.24	715.38	55.23	371.59	1032.24	986.03
647.39	878.58	1853.44	2633.34	989.28	171.21	1530.57	1419.39	3093.16
20413.79	32837.67	60668.97	77392.98	28376.53	6469.56	45031.31	54346.98	111772.79
23090.27	37283.24	72954.47	80199.67	34485.52	7123.41	49435.02	62212.89	123272.17
58662.99	94296.63	209346.44	193985.58	74185.17	15282.59	105129.45	153569.27	263437.23

Additional Intormation
E390
E410
E490
E590
E690
impval
FinIMp
Dom. Vat n90 how Final -62.03 -25.13
$\begin{array}{lll}14.70 & -158.50 & -154.28\end{array}$
-10.01
$\begin{array}{lllll}-6.16 & -41.44 & -161.03 & -13.49\end{array}$ $\begin{array}{llll}-21.14 & -142.24 & -735.66 & -1725.01\end{array}$ $58775.83 \quad 94460.20208640 .39192430 .9074278 .00 \quad 15255.29104945 .79152672 .58261698 .73$ $\begin{array}{lllllllllll}7965.20 & 9349.49 & 17840.32 & 22572.00 & 6163.25 & 611.85 & 4380.32 & 16404.25 & 34066.07\end{array}$ $\begin{array}{rrrrrrrrr}133.54 & 249.60 & 822.58 & 928.00 & 109.60 & 27.36 & 184.08 & 859.56 & 1880.04\end{array}$ $\begin{array}{lllllllll}343.91 & 335.34 & 1068.12 & 1173.00 & 190.97 & 54.01 & 363.40 & 1996.32 & 3177.25\end{array}$ $\begin{array}{llllllllll}8309.11 & 9684.82 & 18900.44 & 23745.00 & 6354.22 & 665.86 & 4743.72 & 18400.57 & 37243.31\end{array}$ $\begin{array}{lllllllll}3121.26 & 2114.61 & 3887.48 & 9435.12 & 871.90 & 159.11 & 1070.48 & 7847.26 & 4324.50\end{array}$ $70075.20105801 .54229297 .65222844 .00 \quad 80788.70 \quad 16025.03110388 .39177888 .15302280 .52$ $70075.20105801 .54229297 .65222844 .00 \quad 80788.70 \quad 16025.03110388 .39177888 .15302280 .52$

Primary Inputs:

	Satter 28 Sold			ter 31	er 32 Sa			dials
E010	4785.74	16643.91	40	37.40	549364.53	06189.82	0.00	1651492.66
E020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E030	1060.20	7358.05	44516.69	96201.29	225155.98	6906.72	0.00	108135.84
E070	5845.95	24001.96	145256.97	313738.74	324208.17	313096.54	0.00	1759628.18
080	511.56	12563.48	7686.98	37601.91	106049.19	23817.71	0.00	287592.18
E090	6357.50	36565.45	152944.22	351340.26	430257.37	336914.24	0.00	2047219.10
Freight	106.84	185.01	347.16	667.46	300.40	318.73	3.99	9325.47
Duty	74.73	40.55	203.17	313.18	408.55	262.55	0.00	7349.48
TotE111-C	1-C 50.27	1558.31	1253.23	5169.98	10779.82	2299.22	0.00	29780.47
E112	169.51	2242.14	2888.07	6271.09	9464.72	10008.02	648.08	38323.44
E180	6018.18	27811.31	148114.65	322405.92	336941.84	315957.05	649.08	1812995.71
E190	6758.85	40591.45	157635.85	363761.96	451210.86	349802.77	652.07	2131997.94
E290	72							

Additional Information

E390	133.93	295.32	563.45	-82.96	1283.55	-1224.36	0.00	4.33
E410	133.32	2608.49	189.66	1621.49	27873.29	-26544.57	0.00	0.00
E490	17549.43	87422.54	315038.23	567226.89	762160.71	453415.52	1334.91	4111631.54
E590	7169.83	730.66	2396.30	16083.05	13415.39	820.18	204.88	328300.00
E690	180.22	7.07	0.00	2.50	13.79	0.00	0.00	11026.00
impvat	792.24	25.59	0.00	58.14	163.15	0.07	0.00	18379.00
FintMp	7962.06	756.25	2396.30	16141.18	13578.54	820.25	204.88	346679.00
Dam. Vat	1401.40	2983.76	1205.32	16783.57	17220.01	330.22	0.00	92773.71
=980	76862.65	89603.75317386 .90	594980.50	782174.82452765 .21	1539.79	4521192.00		
Row Final	26862.65	89603.75	317386.90	594980.50	782174.82	452266.11	1539.79	4521192.00

S1	-1.00	-0.44	-0.10	-0.07	0.00	0.00	-0.03	-0.09	0.00
S2	-0.44	-159.00	0.00	0.00	-0.13	-100.00	-3.60	-10.22	-0.51
S3	-0.10	0.00	-34.50	-0.64	-0.03	-17.15	-0.81	-2.29	-0.11
S4	-0.07	0.00	-0.64	-23.00	-0.02	-12.00	-0.55	-1.57	-0.08
S5	0.00	-0.13	-0.03	-0.02	0.00	-0.23	-0.01	-0.03	0.00
S6	0.00	0.00	0.00	0.00	-0.23	-129.00	-6.27	-17.83	-0.89
S7	-0.03	-3.60	-0.31	-0.23	-0.01	-6.27	-0.27	-0.77	-0.04
S8	-0.09	0.00	-0.79	-0.57	-0.03	-21.00	-0.77	-2.19	-0.11
S9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.68
S10	0.07	7.56	1.69	1.16	0.02	13.18	0.57	1.62	0.71
S11	0.00	0.17	0.04	0.03	0.00	0.29	0.01	0.04	0.38
S12	0.00	-0.40	-0.09	-0.06	0.00	-0.69	-0.03	-0.09	0.00
S13	-0.26	-28.40	-6.36	-4.35	-0.08	-49.53	-2.14	-6.09	0.00
S14	0.32	35.02	7.84	5.37	0.10	61.08	2.64	7.49	0.01
S15	0.12	13.05	2.92	2.00	0.04	22.76	0.98	2.79	1.79
S16	0.00	0.39	0.09	0.06	0.00	0.68	0.03	0.08	0.04
S17	0.00	0.20	0.04	0.03	0.00	0.35	0.02	0.04	0.02
S18	0.00	0.05	0.01	0.01	0.00	0.09	0.00	0.01	0.02
S19	0.00	0.19	0.04	0.03	0.00	0.32	0.01	0.04	0.33
S20	0.00	0.24	0.05	0.04	0.00	0.41	0.02	0.05	0.07
S21	0.17	18.75	4.20	2.88	0.05	32.71	1.41	4.01	0.85
S22	1.66	181.37	40.59	27.81	0.50	316.31	13.66	38.81	17.05
S23	0.00	0.51	0.11	0.08	0.00	0.89	0.04	0.11	0.42
S24	0.00	0.12	0.03	0.02	0.00	0.22	0.01	0.03	0.11
S25	0.01	0.83	0.19	0.13	0.00	1.45	0.06	0.18	0.74
S26	0.01	0.96	0.21	0.15	0.00	1.67	0.07	0.20	0.27
S27	0.03	3.17	0.71	0.49	0.01	5.52	0.24	0.68	1.95
S28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
S29	0.06	6.32	1.42	0.97	0.02	11.03	0.48	1.35	8.91
S30	0.02	2.70	0.60	0.41	0.01	4.70	0.20	0.58	6.06
S31	-0.02	-2.61	-0.58	-0.40	-0.01	-4.55	-0.20	-0.56	-34.39
S32	0.43	47.35	10.60	7.26	0.13	82.58	3.56	10.13	27.31
S33	0.01	0.71	0.16	0.11	0.00	1.24	0.05	0.15	0.10
S34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S390	1.14	124.71	27.91	19.12	0.34	217.49	9.39	26.68	32.67
S30									

Salter 10 Salter 11 Salter 12 Salter 13 Satter 14 Sater 15 Salter 16 Salter 17 Sather 18

S1	0.00	0.00	-2.57	-1.66	-1.90	-0.20	-0.06	-0.03	-0.01
S2	0.00	-0.08	-180.00	-181.55	-206.00	-22.08	-6.00	-3.09	-0.60
S3	0.00	-0.02	-44.00	-40.64	-48.41	-4.94	-1.34	-0.69	-0.14
S4	0.00	-0.01	-30.00	-27.84	-33.16	-3.39	-0.92	-0.47	-0.09
S5	0.00	0.00	-0.77	-0.50	-0.59	-0.06	-0.02	-0.01	0.00
S6	-0.01	-0.15	-621.00	-316.63	-377.22	-38.51	-10.47	-5.39	-1.05
S7	0.00	-0.01	-21.10	-13.67	-16.29	-1.66	-0.45	-0.23	-0.05
S8	0.00	-0.02	-59.96	-38.85	-56.00	-4.72	-1.28	-0.66	-0.13
S9	0.00	0.88	0.00	0.00	0.03	0.00	0.04	0.02	0.00
510	4.63	13.38	2.66	3.48	11.63	4.00	3.83	1.97	0.67
S11	0.03	171.91	0.01	0.19	0.25	0.17	0.02	0.01	0.03
S12	-0.01	0.00	-108.57	-0.80	-96.09	-0.02	-4.24	-2.18	-106.88
S13	0.00	-0.04	-9.97	-93.51	-297.61	-6.42	-0.11	-0.06	-0.09
S14	0.00	0.03	6.48	3.76	92.81	7.48	0.11	0.06	0.03
S15	0.61	17.44	5.50	2.83	92.58	521.81	4.38	2.25	1.72
S16	0.00	0.14	0.10	0.02	0.33	0.08	50.94	26.24	1.21
S17	0.00	0.07	0.05	0.01	0.17	0.04	26.24	13.52	0.62
S18	0.00	0.01	0.00	0.00	0.01	0.00	1.72	0.89	12.14
S19	0.00	0.41	0.27	0.15	0.96	1.08	0.18	0.09	0.50
S20	0.01	1.03	1.45	1.96	7.19	4.02	2.09	1.08	0.99
S21	0.13	11.18	2.16	3.57	14.03	3.63	19.97	10.29	7.17
S22	111.16	328.48	63.87	83.44	279.15	95.92	91.81	47.30	16.13.
S23	0.81	5.98	0.28	0.44	2.39	4.48	0.13	0.07	0.07
S24	0.01	0.37	0.17	0.07	0.77	0.30	0.08	0.04	0.07
325	0.06	2.49	8.14	0.50	5.16	2.01	0.54	0.28	0.46
S26	0.01	2.86	0.39	0.42	0.91	0.33	0.19	0.10	0.06
S27	0.07	5.68	0.69	0.44	1.98	0.93	1.55	0.80	0.34
S28	0.00	0.04	0.01	0.01	0.07	0.01	0.24	0.13	0.06
S29	0.34	67.75	3.96	3.41	13.48	4.21	9.24	4.76	1.23
S30	0.25	3.12	0.47	0.45	2.31	1.29	1.39	0.72	0.49
S31	-6.66	-165.13	-15.03	-24.42	-150.33	-42.56	-39.47	-20.33	-13.04
S32	3.39	124.09	42.14	31.12	183.95	123.53	104.77	53.97	29.21
S33	0.01	0.78	0.26	0.20	1.03	0.41	0.86	0.44	0.23
534	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B990	114.05	592.67	-960.59	-603.59	-573.08	651.17	255.98	131.87	-48.65

S1	-0.26	-0.04	-0.03	0.00	-0.01	0.00	0.00	0.00	0.00
S2	-28.35	-4.70	-3.70	-0.14	-0.56	-0.01	-0.06	-0.07	-0.26
S3	-6.35	-1.05	-0.83	-0.03	-0.12	0.00	-0.01	-0.02	-0.06
S4	-4.35	-0.72	-0.57	-0.02	-0.09	0.00	-0.01	-0.01	-0.04
S5	-0.08	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
S6	-49.45	-8.19	-6.46	-0.25	-0.97	-0.01	-0.10	-0.12	-0.46
S7	-2.13	-0.35	-0.28	-0.01	-0.04	0.00	0.00	-0.01	-0.02
S8	-6.07	-1.01	-0.79	-0.03	-0.12	0.00	-0.01	-0.01	-0.06
S9	0.00	0.00	0.23	6.38	0.18	0.01	0.05	0.05	0.03
S10	4.18	8.18	61.20	111.86	25.74	1.01	6.79	7.82	11.72
S11	0.55	0.38	4.36	0.65	3.35	8.33	56.01	26.98	36.74
S12	-1.94	0.00	-32.86	-0.12	-1.14	0.00	0.00	0.00	0.00
S13	-0.03	-4.46	-16.20	0.00	-0.05	0.00	-0.03	-0.02	-0.18
S14	0.08	0.53	5.87	0.07	0.04	0.00	0.02	0.00	0.06
S15	5.71	28.67	102.66	14.96	8.73	1.14	7.69	11.69	24.70
S16	2.08	0.58	2.96	0.03	0.23	0.05	0.31	2.01	0.47
S17	1.07	0.30	1.53	0.02	0.12	0.02	0.16	1.04	0.24
S18	0.33	0.15	0.17	0.01	0.01	0.01	0.04	0.23	0.17
S19	34.17	0.50	1.33	0.03	1.30	0.25	1.66	2.28	2.73
S20	1.13	64.04	9.14	0.27	3.71	0.22	1.45	1.51	4.62
S21	10.60	14.67	202.74	3.21	11.80	1.35	9.11	25.08	27.15
S22	100.32	196.25	1468.95	2684.64	618.01	24.25	163.16	187.76	281.30
S23	1.53	0.59	8.89	0.28	38.52	0.39	2.60	3.66	4.55
S24	0.44	0.12	0.81	0.22	0.29	0.36	2.42	4.56	4.98
S25	2.98	0.82	5.47	1.45	1.98	2.42	16.28	30.68	33.53
S26	0.36	0.79	0.77	0.13	1.83	0.19	1.28	523.66	12.24
S27	1.22	2.05	4.51	1.87	4.93	0.90	6.09	23.49	87.97
S28	0.03	0.05	0.12	0.02	0.09	0.02	0.10	0.09	0.31
S29	7.13	16.89	63.17	15.56	25.66	2.08	14.00	13.40	19.58
S30	1.32	2.09	5.11	6.40	2.91	0.49	3.22	3.58	5.41
S31	-62.30	-105.98	-274.35	-166.73	-182.38	-16.60	-111.66	-134.67	-219.03
S32	111.80	244.93	521.16	86.22	150.67	28.21	189.82	296.15	644.25
S33	0.74	1.58	3.56	0.32	0.75	0.18	1.20	1.45	3.39
S34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B990	126.47	457.65	2138.62	2767.24	715.38	55.23	371.59	1032.24	986.03

S1	0.00	0.00	-0.01	-0.01	-0.43	-0.12	0.00	-8.94
S2	-0.36	-0.01	-1.50	-1.54	-46.63	-13.31	0.00	-975.20
S3	-0.08	0.00	-0.34	-0.34	-10.44	-2.98	0.00	-218.27
S4	-0.05	0.00	-0.23	-0.24	-7.15	-2.04	0.00	-149.52
S5	0.00	0.00	0.00	0.00	-0.13	-0.04	0.00	-2.67
S6	-0.62	-0.01	-2.61	-2.69	-81.33	-23.21	0.00	-1700.75
S7	-0.03	0.00	-0.11	-0.12	-3.51	-1.00	0.00	-73.42
S8	-0.08	0.00	-0.32	-0.33	-9.98	-2.85	0.00	-208.66
S9	0.01	11.58	0.07	0.05	0.41	0.16	0.00	21.87
S10	0.66	56.14	19.72	128.51	30.93	40.51	0.00	587.78
S11	3.80	0.33	24.55	1.35	0.17	0.51	0.00	341.62
S12	-2.68	0.00	-0.21	-14.64	-552.71	-165.09	0.00	-1091.57
S13	-0.08	0.00	-0.09	-6.16	-270.64	-102.90	0.00	-905.84
S14	0.00	0.00	0.07	2.31	39.35	7.48	0.00	286.51
S15	1.20	8.95	23.84	143.90	4821.99	168.93	0.00	6070.23
S16	0.54	0.03	2.01	31.92	5.08	2.31	0.00	131.04
S17	0.28	0.02	1.03	16.44	2.62	1.19	0.00	67.50
S18	0.06	0.01	0.02	0.50	0.77	0.48	0.00	17.91
S19	0.77	0.09	29.85	3.25	1.99	2.22	0.00	87.04
S20	1.23	0.54	2.38	71.39	26.77	14.97	0.00	224.07
S21	4.42	1.27	28.13	68.42	28.96	35.21	0.00	609.27
S22	15.77	1347.33	473.28	3084.31	742.42	972.28	0.00	14115.05
S23	0.53	0.23	159.48	2.59	4.98	2.34	0.00	247.17
S24	0.11	0.22	5.60	0.77	0.59	1.04	0.00	24.95
S25	0.74	1.47	37.68	5.19	3.95	6.99	0.00	167.87
S26	0.16	0.26	2.84	332.17	30.06	116.02	0.00	1031.57
S27	0.84	5.97	33.62	9.99	15.61	24.06	0.00	248.39
S28	3.19	0.12	0.44	2.76	2.53	1.56	0.00	12.03
S29	1.41	76.50	12.44	85.09	74.51	54.44	0.00	620.81
S30	0.40	15.14	145.35	60.02	170.81	94.67	0.00	542.68
S31	-17.12	-51.60	-410.87	-1253.53	-199.59	-267.23	0.00	-3993.92
S32	35.08	83.23	665.02	2373.10	5929.68	1321.82	0.00	13566.66
S33	0.18	0.50	2.10	25.55	28.16	10.79	0.00	87.19
S34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S990	50.27	1558.31	1253.23	5169.98	10779.82	2299.22	0.00	29780.47

Total Taves On import	
S1	29.72
S2	1442.93
S3	137.15
S4	273.16
S5	112.58
S6	164.58
S7	462.88
S8	234.30
S9	26.57
S10	843.00
S11	337.75
S12	416.11
513	80.93
S14	715.99
S15	893.06
S15	1353.87
S17	697.45
S18	415.43
S19	343.91
S20	335.34
521	1068.12
S22	1173.00
523	190.97
S24	54.01
S25	363.40
S26	1996.32
S27	3177.25
S28	792.24
S29	25.59
S30	0.00
S31	58.14
S32	163.15
S33	0.07
534	0.00
8990	18379.00

Tax: F01 T8x: F02
T3x: F0

81	-1.86	0.00	0.71	-0.03	-0.07	-0.02	-10.71	S1
S2	-180.65	0.00	77.86	-2.81	-7.25	-2.13	-1168.05	S2
S3	-40.43	0.00	17.43	-0.63	-1.62	-0.48	-261.43	S3
S4	-27.70	0.00	11.94	-0.43	-1.11	-0.33	-179.08	S4
S5	-0.49	0.00	0.21	-0.01	-0.02	-0.01	-3.20	S5
S6	-315.05	0.00	135.79	-4.91	-12.65	-3.72	-2037.09	S6
S7	-13.60	0.00	5.86	-0.21	-0.55	-0.16	-87.94	S7
S8	-38.65	0.00	16.66	-0.60	-1.55	-0.46	-249.92	S8
S9	1.59	0.00	88.48	0.00	0.02	0.00	23.48	S9
S10	318.04	0.00	704.93	0.47	10.84	73.55	990.69	S10
S11	0.14	0.00	97.01	0.44	15.08	19.40	376.67	S11
S12	-346.99	0.00	2019.94	-0.02	-0.23	-92.63	-1531.43	S12
S13	-2303.04	0.00	-1478.28	-0.14	11.31	-328.93	-3526.65	S13
S14	353.29	0.00	3891.15	0.09	0.13	19.25	659.26	S14
S 15	13973.52	0.00	18738.33	2.05	111.27	911.08	21068.15	S15
S16	133.60	0.00	3790.98	3.39	7.05	11.71	286.78	S16
S17	68.82	0.00	1952.93	1.75	3.63	6.03	147.74	S17
S18	44.78	0.00	1465.10	0.40	2.67	3.32	69.08	S18
S19	61.02	0.00	3175.60	32.05	4.23	2.84	187.18	S19
S20	43.32	0.00	2156.03	0.06	1.67	4.50	273.62	S20
S21	132.76	0.00	4009.98	3.47	3.52	75.76	824.78	S21
S22	7633.16	0.00	17064.54	11.39	260.23	1765.21	23785.05	S22
S23	14.47	0.00	884.99	4.76	5.33	9.83	281.56	S23
S24	3.73	0.00	162.07	7.39	0.87	1.80	39.25	S24
S25	25.08	0.00	1090.43	53.10	5.88	12.12	264.06	S25
S26	772.29	0.00	8605.60	956.06	39.62	699.88	3499.41	S26
S27	69.33	0.00	4366.66	218.90	10.14	68.40	615.16	S27
S28	31.19	0.00	1430.89	1.83	0.56	2.45	48.07	S28
S29	277.92	0.00	3258.32	1.61	-1.18	4.05	903.21	S29
S30	100.95	0.00	1235.04	2098.57	1.37	25.85	2769.43	S30
S31	-640.61	0.00	16066.23	-107.64	-14.38	-212.88	-4969.43	531
S32	20037.45	3.62	37196.91	686.93	-0.46	621.50	34912.08	S32
S33	149.46	525.49	934.21	1.37	-0.17	3.87	241.72	533
S2A.	ก@几	n¢0	n.@	n!a	n,	2.n	n!	c2a.
8990	40337.02	529.10	133174.56	3969.16	454.18	3700.67	78241.49	8990

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIFICATIONS

	SALTER Model (34 sectors)		EUROPE		SITC NACE	
	$\begin{aligned} & \text { Ind. } \\ & \text { No. } \end{aligned}$	Description	$\begin{aligned} & \text { I-O } \\ & \text { Ind. } \end{aligned}$	Description		
	1	Paddy rice	010(p)	Agricultural, forestry and fishery products	042	011/030
	2	Non-grain crops	010(p)	Agricultural, forestry and fishery products	05+06+07	011/030
$\underset{\omega}{\text { M }}$	3	Wheat	010(p)	Agricultural, forestry and fishery products	041+046	011/030
	4	Grain, other than wheat and rice	010(p)	Agricultural, forestry and fishery products	$\begin{aligned} & 043+044 \\ & +045+047 \end{aligned}$	011/030
	5	Wool	010(p)	Agricultural, forestry and fishery products	268	011/030
	6	Other livestock products	010(p)	Agricultural, forestry and fishery products	Residual	011/030
	7	Forestry	010(p)	Agricultural, forestry and fishery products	24	011/030
	8	Fishing	010(p)	Agricultural, forestry and fishery products	03	011/030
	9	Coal	030	Coal, lignite (brown coal) and briquettes	32	$111+112$

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIFICATIONS

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIFICATIONS

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIFICATIONS

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIfiCATIONS
SALTER Model
$(34$ sectors $)$$\quad$ EUROPE \quad SITC \quad NACE

Ind. No.	Description	$\begin{aligned} & \text { I-O } \\ & \text { Ind. } \end{aligned}$	Description	
31	Trade and transport	570	Wholesale and retail trade N/A	$\begin{aligned} & 610+630+ \\ & 640+ \end{aligned}$
		$611+$	Inland transport services	$710+$
		$\begin{aligned} & 613+617 \\ & 630 \end{aligned}$	Maritime and air transport	$721 / 725+730$ $+741+742$
			Maritime and air transport services	$\begin{aligned} & +741+742 \\ & +750 \end{aligned}$
			631 Maritime transport and coastal services	
			633 Air transport services	
		650	Auxiliary transport services	$\begin{aligned} & 761 / 764 \\ & +771 / 773 \end{aligned}$
32	Other services (private)	550	Recovery and repair services N/A	$\begin{aligned} & 621+671 \\ & +672 \end{aligned}$
		590		660
		690	Services of credit and insurance institutions	811/820
		710	Business services provided to enterprises	830/840
		730	Services of renting of immovable goods	850
		790	Recreational and cultural services, personal services, other market services nec	$\begin{aligned} & 92 \mathrm{C}+96 \mathrm{C}+ \\ & 97 \mathrm{C}+981 / \end{aligned}$
		930	Domestic services and other nonmarket services nec	$96 \mathrm{~B}+97 \mathrm{~B}+$

Appendix 2: CONCORDANCE BETWEEN SALTER 34 SECTOR TABLE, ECR59, SITC AND NACE CLASSIFICATIONS:

SALTER Model (34 sectors)			EUROPE SITC	NACE
Ind. No.	Description	$\begin{aligned} & \text { I-O } \\ & \text { Ind. } \end{aligned}$	Description	
33	Other services (Government)	$\begin{aligned} & 670 \\ & 750 \end{aligned}$	Communication services Market services of education and research	$\begin{aligned} & 790 \\ & 93 C+94 C \end{aligned}$
		$\begin{aligned} & 770 \\ & 810 \end{aligned}$	Market services of health General public services	$\begin{aligned} & 95 \mathrm{C} \\ & 91+92 \mathrm{~A}+ \end{aligned}$
		850	Non-market services of education and research provided by general government and private non-profit institutions	$\begin{aligned} & 96 A+97 A \\ & 93 A+93 B \\ & +94 A+94 B \end{aligned}$
		890	Non-market services of health provided by general government and private non-profit institutions	$95 A+95 B$
34	Other services (Ownership of ? dwellings)		N/A	
$\mathrm{N} / \mathrm{A}=\mathrm{No}$ applied category				

| APPENDIX 3 CONTINUED: CONCORDANCE | BETWBEN SALTER 34 | SECTOR CLASSIFICATION AND IRISH CLASSIFICATIONS |
| :--- | :--- | :--- | :--- |

APPENDIX 3 CONTINUED: CONCORDANCE BETWEEN SALTER 34 SECTOR CLASSIFICATION AND IRISH CLASSIFICATIONS

Ind.	Description	IRL	Description
13	Milk products	$21(\mathrm{p})$	Food
14	Other food products	$21(\mathrm{p})$	Food
15	Beverages and tobacco	6	Drink and tobacco
16	Spinning, weaving, dyeing, made-up textile goods	7	Textiles
17	Wearing apparel Leather, fur and their products	$8(\mathrm{p})$	Cloth and Footwear
18	Lumber and wood products	9	Cloth and Footwear
20	Pulp, paper and printing Chemicals, rubber and plastic products	10	11

Ind.	Description	IRL	Description
26	Transport equipment	13(p)	Metal, Engineering
27	Other machinery and equipment	13 (p)	Metal, Engineering
28	Other manufacturing	14	Other manufacturing
29	Electricity, gas and water	4	Electricity
30	Construction	15	Construction
31	Trade and transport	16	Trade
32	Other services (private)	$17+18(\mathrm{p})$	Commerce, Public and Professional
33	Other services (Government)	18 (p)	Public and Professional
34	```Other services (Ownership of dwellings```	19	Household

```
Appendix 4: Details on taxes provided (by sector) in individual EC Input-Output Tables.
```

	EC code	Description	Bel	Den	Fra	Ger(W.)	Gre	Ita	Irl	Lux	Neth	Por	Spa	UK
	110	Taxes on Production	N	Y	N	N	Y	Y	N	N	N	N	Y	Y
	111	Taxes on Products	Y	Y	N	N	Y	N	N	N	Y	N	N	Y
	112	Non-Commodity Taxes	Y	Y	N	N	N	N	N	N	N	N	N	Y
	120	Subsidies	N	N	N	N	Y	Y	N	N	Y	N	Y	Y
	170	Net taxes on Production	N	N	N	Y	Y	Y	Y	N	Y	Y	Y	Y
N	270	Non-deductible Vat	N	N	N	Y	N	N	N	N	Y	N	N	Y

$Y=$ Data supplied $N=$ Data not supplied (explicitly). Although some categories of data are not
provided explicitly, they can be deduced by the following relationship between variables:
$110=111+112$
$170=110-120$
The missing information can be deduced from : Structure and Activity of Industry: Annual Inquiry
Eurostat 4 C , Luxembourg.

Appendix 5:

Commodity Flow Accounts for the European Community
(Source: National Accounts, Input-Output Tables 1980, Eurostat 2c, Luxembourg).
agricul ture prooucts oi prod. agriculture

!	EUR-A	- 1	DK	0	ESP	, 1	681	11			L
re sourcts		-	,	,		I	1	1	\cdots	-	\cdots
		!					!	I			
I total imitmeniate infut	4471	- 1	4621	3921	4371	4.31	-1	3701	4041	2671	5261
I value added - harkei prices	4141	-1	3791	3031	4831	4221	-1	4971	3001	4021	2681
lactual outrui	0.51	-1	0421	6951	9201	8721	-1	8761	2041	7691	'1
		,					I				
1 imports frotithe ec commazes	-1	-1	31	1071	171	321	- 1	561	801	261	541
1 imporis froti imird conmirits	1541	-1	1271	1991	1181	951	-1	1311	2161	2241	1511
protal imporis	1541	-1	1501	3051	1291	1271	-1	1871	2961	2501	2051
frotal mesources		-1	10001	20001	10001	20001	-1	$1000{ }^{\prime}$	20001	10001	10001
frotal rescurces	1				10001	${ }^{10001}$	-		1000		1000
		1	1	,	1	1	1	1	1	1	
uses			1		1		!				
	I	'	i		1		!	I	1		
gootal iniermegiate duitut	7771	-1	7861	${ }_{808}$	720	7201	-1	6951	8601	7031	801
							,				
		1					I	!		1	
	1821	-1	971	1601	1971	1321	-1	2321	991	2471	31
	41	-1	-51	31	${ }^{81}$	$9!$	-	1	31	101	-21
I Exports io ic condrits	-1	-1	941	211	311	901	-	331	2931	211	411
I exporis io ihimo counimits	211	-1	501	131	171	391	-1	231	331	41	61
! total exporis	241	-1	1431	341	491	1291	-1	461	2261	251	47
		!			0		I				
iat	10001	-1	10001	10001	10001	10001	-1	10001	10001	10001	1
		1	1		1						
tiotal resources/uses										I	
- mro ecu	${ }^{200.51}$	-1	6.01	39.31	22.31	44.41	-1	36.41	14.11	3.91	24.51
- mro Pps	201.41	-1	5.71	37.61	32.31	44.51	-1	51.21	13.81	2.61	27.01

resourct
 actual outrut

imporis from the er comnirifs inforis trum intro comirites

idial resources

uses

Exports io ec conitits Exporis 10 THMRO countries EXPOAYS TOTAL ExPORTS
 total uses

total resources,yses	

coal 03 houtlle

			core	05	cone						
!	R-8	1	ok	01	Esp	F	sR	1	M 1		* 1
ressources		1		-	1	1	I	1	\cdots		
+		1	1		1	1	1		,		
- total entrees intermediatres	10491	-1	-1	10731	9791	8331	-1	12141	-1	-	89.9
\| valeur a joutief - prix du marchei	1191	-1	-1	521	171	1121	-1	${ }^{1214} 9$	-1 -1	-	849 28.1
\|propuction effective	11701	-1	-1	$1125{ }^{1}$	21501	9531	-	13001	-1	I	'10
		1	1			${ }^{3} 1$	-1	${ }^{13001}$	-1	-	
1 imporiationis ce	-1	-1	-1	281	271	2061	-1	191	-1	-	ol
1 Imporialiols pr	131	-1	7474	81	661	91	-1	11	-1	-1	01
importaions totales	${ }^{131}$	-1	747	261	94	2351	-1	201	-1	-	01
tiotal ressources	10001	-1	20001	10001	20001	1000	-1	1000!	-1	-	20081
		1					1	2000	-1	-	
						I	!		;		
\% emplots	1	1	1	1	I	!	1		1		
		I		,	+		,	,	1		
giotal sorties ihiermeotaires	7981	-1	$427!$	7281	9821	8911	I	as6	-1	-	5301
		I					1		'		
\| coisormation des menages		. 1	361	221	${ }_{101}^{10}$	101	-1		-1	-	
- formation bruie oe capital fixel	-1	-1	-1	-1	-1	${ }^{18}$	-1		-1	-	206
Exportations Ce	-1	-1	-1	1061	0	351	-1	41	-1	-1	361
Exporiations pites	611	-1	3971	601	01	391	-1	751	-1	-	${ }_{671} 6$
\mid exporiations totales		-1		254	${ }^{11}$	741	-1	791	-1		103
fiotal emplots finats	10001	-1	10001	10001	10001	10001	-	20001	-1	-	1000
		1							I		
$\left.\right\|_{\text {TOTAL }} ^{\text {RESSOURCE S/EMP LOIS }}$	0.31										,
$1-\mathrm{MRO}$ SPa	8.81	-1 -1	. 01	3.21	41 61	1.11	-1	. 71	-1	-	2.11 1.21

pejrole - proc,gaz n of petrolelet + mat.gas

electr.gas.st.,hater on eltctr.,gaz, vap.egau

	fun-	-	ox	01	ESP	,	6R	1 !		P 1	* 1
pesturces				!			------1				\cdots
- total inteameoiate inivi	5131	-1	5851	451	5021	4351	-1	5711	5001	5491	6291
I value adoeo - makrei prices	4421	-1	391	4801	431	$513!$	-1	3401	4971	${ }^{3901}$	3571
lactual ousput	9591	-1	977	9391	9331	9661	-1	9121	997	9401	9061
							-				
- imports from the ec countries	-1	-1	11 251	41	151 141 1	101	-1	01 101	$\stackrel{4}{4}$	331 201	-1
-inporis fron thiro countries	$\stackrel{1}{0}$	-1	261	151	291	141	-1	101	41	531	01
	,	I					I				
itotal mesoures	10001	-1	20001	2000	10001	${ }^{1000 \mid}$	-1	10001	10001	1000	20001
		1					,				
usts	1	1	1	1	1	I	+	+	i	+	1
										8481	
giotal intemmeotate ourmut	6891	-	${ }^{4961}$	749			-	${ }^{4}$	50	-	
		1					-1				3741
\| consumpion or hoseholos	3081 21	-1	48.1	237	-1	390	-1	-1	411	-1	-1
- Exports io eic coutiries	-1	-1	251	7	21	31	-1	11	101	21	ol
exporis to itreo countries	4	-1	151	71	11	7	-1	11	${ }^{-1}$	41	-
I Tiotal exporis	21	-1	401	141	3	101	-1	21	101	51	1
		+					-1		10001	10001	10001
otal uses	1000	-1									
fittal resources/uses							-1	20.01	4.11	1.01	17.01
- - MRO ETU	01.31 09.61	-1	1.91	24.31	70.21 10.11	${ }_{16.31}^{16.31}$	-1	14.11	4.01	1.91	10.71

terbous mon mot 13 terreux et mon ferb.

	cur-e		Ox	0							UK. ${ }^{\text {I }}$
resources		1	1	-		I	I		1		
	,	-1		061	6061	5081	-1	5521	3561	4301	541
foral intrateomate hifut	6661 1891	-1 -1	${ }_{2}^{2421}$	6011 131		5081 2271	-1	5521 1911	3561 1431		1361
\| value modeo - market prices	${ }^{1891}$	-1	${ }^{201}$	${ }^{133}$	192	${ }^{227}$	-1	191	143	143	${ }^{2361}$
lactual output	8561	-1	3121	7941	8781	7411	-1	. 7431	5001	5811	6771
imporis trom the ec cominties	I	'	4391	821	591	171	-1	1251	3231	2721	1341
\%imporis from the ic cominies	1681	-1	2491	1331	721	1271	-1	1534	1771	1631	1931
htotal imporis	1611	-1	6081	2161	131	2981	-1	2781	5001	4351	3271
		1									
ptotal resources	10001	-1	10001	10001	${ }^{20001}$	10001	-1	1000!	10001	10001	${ }^{10001}$
		1	,	1		1	,				
usts	1	!	,	-			\|	1	1		
	,	I	I	!		!	1	I			
	9071	-1	173		8641		-1	8481	5551	8761	
itotal iniemmedate output	9071	-1	731	8041	864		-1	8	55		
		,	,	,	,	,	I	I	1	-1	
I consumpiliow or hosemolos	11	-1	11	11	-1	21	-1	-1	81	-1	11
\| gross tixeo capital formation	31	-1	11	31	-1	-1	1	-1			
- exports 10 ec. comitimes	-1	-1	1251	${ }^{551}$	67	1461	-	541	2871	531	961
exports to timro countries	1061	-1	1011	971	44	1221	-1	65	128	571	109
total exports	761	-1	2261	1821	1321	2681	-1	1191	425	120	2061
		1									
tital uses	10001	-1	10001	10001	10001	10001	-1	10001	10001	10001	10001
1 dat use	1	1				1					
hiotal resources/uses							,		I	I	
- mro ecu	140.21	-1	. 91	59.51	14.21	28.11	-1	25.41	6.31	1.11	24.11
- mRo pps	255.11	-1	-91	56.91	19.91	28.21	-1	35.71	6.21	2.21	26.51

produits chimlques 17 chemical prooucts

RESSOURCES	EUR-8	1	ox 1	0--1	Esp	F	68	1	N	p	W.
RESSOURCES	1	1			,	1	1			\cdots	
I total entrees interiediaires		-1		585	+	1	I			,	
\| Valeur ajoute - prix du matche	6321 2761	-1	3601 194	5851	4491	4951	-1	5351	5041	4521	5811
		?	194	2341	3131	274	-1	2201	1501	1441	2281
rouverion effective	9101	-1	5551	8191	7621	7751	-1	754	6541	5961	8091
1 importations ce		'			1		,			5961	
1 importations pt	-911	-1	2891 1591	1151 661	1161	1591 651	-1	1701	2461	2421	1161
importations motales	891	-1	4401	${ }_{1811}^{661}$	2271	651 224	-1	731	1011	1621	751
itital ressources							1		1		191
-	10001	-1	10001	10001	10001	10001	-1	20001	10001	10001	20001
i		i				1	,				
enplors		!		1	1		!				
ftoral sorties mitermeoiaires		-1		621	!	54	-			,	
-	719	-1	5921	621	6921	5401	-1	6671	4231	732	81
1 coisormation ois mevasis		1					,				
	1521	-1	741	961	1981	1721	-1	182 !	641	1421	61
- Exportations ge maptal	-1	-1	5191	1221^{-1}	391	1411	-1 -1	Sal	${ }^{21}$	-1	33
Exxportations pt	1531	-1	1891	1551	371	1251	-1	${ }_{981}$	3301		1331
Exportations totales	1271	-1	3001	2771	1061	2661	-1	1501	5091	${ }_{1} 131$	1531 2061
fital enplois fimals		-					1			1	
Int encois fimals		-1			10001	10001	-1	10001	10001	10001	10001
trotal ressources/Enplois											
- MRO Ecu	161.	-1	3.11	63.41	11.11	35.61	-1	27.31		$2 \cdot 1$	
- MRo SPA	176.51	-1	2.91	80.61	15.61	35.71	-1	30.41	15.61 15.21	4.2 .21	30.91 34.01

	Up-8	B 1	DK	0 I	csp		68	1	HL	P 1	uk
respurcts	,	,	,					I		I	I
asourts	1	I	1				1	1			
I fotal mimbrtitate infut	5181	-1	4011	5121	4831	3911	-1	5671	4431	4631	5481
\| yalue adoto - mabke i frices	4.441	-1	2951	4061	4,371	5341	-1	3761	2981	3991	3631
		-1				017	-		7421		
\|actual output	${ }^{9631}$	-1	${ }^{6961}$	917	9241	${ }^{917}$	-1		${ }^{7421}$	8621	912
Imporis from the ec coinirats	-1	-1	181	45	311	631	-1	351	2111	881	4.4
I imioris frotimiro cominies	391	-1	1231	381	561	251	-1	211	471	521	451
ftotal imporis	391	- 1	3041	831	871	$88!$	-1	561	2581	1401	881
itotal resources	10001	-1	10001	10001	10001	10001	-1	10001	20001	10001	10001
foral mesourct		,					I				
1		I	I	1	1	I	,	1	1	1	
		,		I							
uses			I	I			I	I	1		
		I	1	I	1	$!$	1	!	I	I	
hital thierneoiate dummi		-1	5831	5001	6071	5191	-1	6991	5881	6081	6831
hotal tamermeorate oummi		-	58	58	${ }^{6}$	5	-		58		
1 corismmition of hostholos	501	-1	601	321	111	401	-1	331	921	67	491
- gross fixeo captial fopmation	1861	-1	1161	2151	1611	2781	-1	451	1201	1521	1501
1 ixporis to it comitroles	-1	- 1	1081	771	281	591	-1	681	1471	371	391
I Exporis io mimp coumries	94	-1	13.1	911	721	814	-1	1151	521	931	891
1 total exnoris	1081	-1	2401	168!	1001	1411	-1	1821	1981	1341	1281
Iroval uses	10001	-1	10001	10001	10001	10001	-1	10001	10001	10001	1000
$!$		1					1				
itoial resourcesmusts											
1 - mro fcu	118.41	-1	2.21	43.31	0.61	27.61	-1	17.41	5.91	1.01	19.41
1 . MRD mps	129.41	-1	2.11	41.4	12.11	27.71	-1	24.51	5.81	1.91	21.41--1

matehiel electrioue 25 electrical gooos

timaer.hooof mpoo. 45 bois,meveles en bots

consirucilon 53 construction

1	EUR-8	-1	ox	01	Esp	F 1	68	1	nt 1	P	0×1
resources		---1		,			---1		\cdots		
resources	1	,	,	,	1		$!$,	,		
I doial iniebmeolail indit	1	+			!	!	I	1	I	,	
diotal intermediate mapuices	4971	-1	5291	4691	4621	5871	-1	5701	5701	601	5611
f yalue modeo - market prices	492	-1	471	5061	512	528	-	529	430	398	422
lactual output	9901	-1	10001	9751	9741	997	-I	10001	10001	10001	831
		+				I	1			I	
1 imports from the fe comitites	-1	-1	-1	51	-1	-1	-1	01	I	1	61
1 amporis fatit thiro counirles	7	-1	-1	191	-1	-1	-1	01	01	-1	111
fiotal 1 mporis	7	-1	-1	251	-1	-1	-1	01	01	-1	171
						-	-				
itomal resources	1000	-1	1000	1000	10001	10001	-1	10001	10001	10001	10001
		I				!	,	I	,		
i		1	1	1	1	1	I	1	1	,	
I	;										
usts		I				!					
!	!	1	I	+	I		!				
	I	1	,	I		I	'				
gtotal imiemmomate output	2021	-1	285	145	2251	111	-1	1381	3361	41	661
		,									
I consurtriow of mosemolos	401	-1	-1	231	201	471	-1	111	231	271	1231
1 gross fixeo capilal formaidor	7491	-1	7151	8071	7541	8421	-1	8501	6151	8581	5141
1 exporis to ec commirits	-1	-1	-1	31	-1	-1	-1	01	101	-1	11
exports id tmiro cuuntras	131	-1	-1	3 il	-1	-1	-1	11	161	-1	101
1 total exports	101	-1	-1	361	-1	-1	-1	11	261	-1	121
Itoial uses	$1000{ }^{\prime}$	-1					-1			1000	1000
toial uses	1000	-1				1000	-1			100	
htotal resources/uses											
1 - mro ecu	291.61	-1	6.71	80.31	25.21	60.31	-1	40.81	20.01	3.1	56.21
- mro prs	323.21	-1	6.31	76.71	35.31	60.51	-1	57.31	19.61	6.31	61.91

		cotrerce		57	molegale ano retail						
1 \|	EUR-8	1	ok	- 1	Esp		681		NL	1	uk
ressources		,	---1	1	-		1	--1	--1-1	1	
		I	1	1	1	1	1	1	1	1	
idial entrees interneduatres		1	1	1	-	1	,	1	4 1	1	
	3181 6881	-1	2961 6981	3101 6781	2381 7501	3081 6051	-1	3211	3421 6161	3021	3531
\| dota entres iniermediares		-	${ }^{6981}$		750	${ }^{665}$	-1	${ }^{636} 1$	${ }^{6161}$	${ }^{681}$	6.21
iproustion effective	9871	-1	9951	988	9881	979	-1	9591	9581	9831	995
! mparalows ce		1	1	1	!	1	1	1	,	1	
Inmorialions CE	-1	-1	31	41	21	41	-1	201	231	21	$2!$
1 Imporialions piIImporialions totales	9	-1		$\stackrel{8}{121}$	5	21 51	-1	221	421	71	51
	1	-	5	${ }^{12}$	7	51	-1	421	421	7	51
tiotal ressources	10001	-1	10001	10001	10001	10001	-1	10001	10001	10001	10001
		1					I				
,		1		1		1	1		1	,	
emplots											
		1	1	-		1	1				
		1	1	!	I	!	I	I	I	!	
giotal sorties intermediaires	2871	-1	3281	2701	2151	2361	-	325	2361	331	!
	1	1	I	,	,	2	,	1	+	3	
i corisommation des menages	6201	-1	4801	5671	731	7051	-1	5921			6311
	311	-1	581	519	251	331	-1	421	461	801	-211
\|lol	-1	-1	6.1	451	121	161	-1	161	1461	61	51
	361	-1	71	501	151	121	-1	261	551	121	531
		-1	1341	1031	271	271	-1	421	2011	181	571
Hotal emplois fitais	1000	-1	10001	1000	10001	10001	-1	10001	10001	10001	1000
									24.31		
	376.91	-1	0.51	95.01	20.81	80.51	-1	69.51	24.31	5.31	67.81
	423.21	-1	8.01	90.81	40.51	80.81	-1	97.61	23.81	10.41	74.71

	EUR-8				Esp	f 1	681	11	14	P	4. 1
ressources	-					------1-		-------1	----	------1	
I messar			+	,		,	,	1	1	,	
\| iotal entrees iniermediaires !	5721	-1	5151	5721	5561	4781	-1	5091	4131	5551	7091
- Valeur ajoutee - prix du turchei	4081	-1	3981	3761	4431	4811	-1	4011	587	3941	2761
Inroouction effective	9821	-1	9131	9481	9991	9701	-1	10001	10001	8991	9801
!		I	1		,		I	I		1	
Importalions ce	-1	-1	251	181	-1	-1	-1	01	-	31	61
1 hirurations pions	111	-1	611	341	-1	-1	-1	01	-1	51	14 201
importations totales	111	-1	871	521	-1	-1	-1	01	-1	81	201
itotal ressources	2000	-1	20001	10001	10009	10001	-1	10001	10001	10001	20001
! !		!				,	,				
1		!	1	1		1				1	
							1				
emplois							,				
1 !		1			1	1		1	I	,	
itotal sorties intermediaires	1781	-1	2921	4271	1041	1441	-1			1381	107
1		,				144					107
		I								I	
\|comsormalidit des memages	8151	-1	7081	5291	8961	8561			884		878
1 fortation brute de capital fixe	-1	-1	-1	211	-1 -1	-1	-1	- $\begin{aligned} & -1 \\ & 01\end{aligned}$	-1	-1 11	5
\| exportalions pi	7	-1	-1	231	-1	-1	-1	11	-1	11	11
! exportaitons totales	7	-1	-1	441		-1	-1	11	-1	1	16
Itotal emplois finals	10001	-	10001	10001	10001	10001	-1	10001	1000	10001	100
1		1	1		,	,		1		1	
fital rissources/emplois											
1-MRD	\| 102.11	-1	1.31 1.31	21.31	14.01 19.71	20.81 20.81	-1	14.91 20.91	3.51 3.51	1.41	25.6 28.2

	IHLND IRAISPORt			61	transport interieur						
1	EUR-8\|	B	ox 1	01	ESP	F	6R	1		P 1	Uk
resources					,	I	,	1	1	I	
1 lor					1		!	I		I	
\| toial imiermediate infut	4391	-1	3501	3851	4631	3031	-	4091	3281	3891	457
I value modo - market prices	5601	-1	6291	5731	5351	5071	-1	5761	5051	5891	5351
laciual output	9091	-	10001	9581	9981	900	-1	991	833	1	${ }^{\prime}$
		\|		,			;	,		,	
I inporis from time ef comitates	-1	-1	-1	241	01	821	-1	31	1671	91	31
1 imports from thimu counirles	111	-1	-1	181	21	271	-1	6	-1	${ }^{131}$	51
trotal imporis	121	-1	-1	421	21	991	-1	1	1671	221	81
		,					-1				
$\left.\right\|^{\text {roial resources }}$	${ }^{10001}$	-1	${ }^{10001}$	${ }^{10001}$	10001	${ }^{1000 \mid}$	-1	${ }^{10001}$			${ }^{10001}$
1		I			,	I	I	i		,	
	I		1		I	,	i	I			
USES	,	,	,	I	I		!	I	I	I	
1	1	1	1	1	I		!	!	I	I	
	'	,	I		,		!	1		I	
doial interneotate dutput	6321	-1	${ }^{6081}$	6801	5491	${ }^{634} 1$	-1	5341	6251	1	6671
		,			1		,				
- consumpition of hosenoids	2971	-1	2481	2591	4001	2381	-1	3371	101	5651	2921
- cposp rixeo carital topmation	251	-1	-1	281	241	-1	-1	451	201	${ }^{-1}$	$2{ }^{201}$
I Exporis 10 ec coumitifs	-1	-1	361	171	121	1041	-1	401	251	131	41
Exporis 10 imimo countries	271	-1		301	141	251	-1	451	-1	121	91
) roial exporis	451	-1	144	471	201	128 \|	-1	851	2531	241	${ }^{131}$
hiotal uses	1000	-1	10001	10001	10001	10001	-1	10001	10001	10001	20001
1 l	.	1		I	1	1	,				
fioial resougces/uses											
1 - mro fcu	83.91	-1	2.01	22.41	7.31	18.71	-1	14.31	5.41	al	16.11
1 . - mro rps	93.91	-1	1.91	21.41	10.21	18.81	-1	20.11	5.31	1.51	17.81

63 ir. maritime, aerien											
I	fupal		ok	0 '	Esp	F	Gr	1 '	m	P	Ux. 1
resourcts				I		!	\cdots	1	\cdots		1
				,	I		I	1	I		1
(dotal mitriegiaiz initut	!	I		I	$5{ }^{\prime}$!	-1	5661	I	I	
j value mueoo-marki imites	2721	-1	${ }_{3} 6551$	3031	3819	1291	-1	3901	1851	1241	$\stackrel{5931}{ } 231$
I		1					,		1		1
paciual outrut	${ }^{854} 1$	-1	9801	${ }^{7731}$	9,81	7801	-1	951	497	785	21
emporis trom tie fe coumiries	-1	-1	61	821	121	1171	-1	211	1161	861	541
1 imporis fram imirl couniries	14,4	-1	141	1461	401	941	-1	221	3871	1291	1201
diotal imperis	1,91	-1	801	2231	581	211	-1	431	5031	2151	1/41
		I									
$\left.\right\|^{\text {toial resturces }}$	10001	-1	10001	10001	${ }^{1001}$	${ }^{10001}$	-1	${ }^{1000 \mid}$	${ }^{10001}$	10001	${ }^{20001}$
	I	,	i	1	,	1	,	,	,	,	
1											
uses		I		I	1		1			,	
1 l	1	!	I	I	1	I	1	!	I	!	
didial inifrmeotaie ouifut	3024	-1	171	4241	0.91	2601	-	167	4761	2951	2331
,		,	1	,			I	,			
1 consumplior of hisemolos		I					-				2051
1 gross fixid capital iopmation	1,51	-1	191	11	${ }_{11} 1$	102	-1	11	313	-1	${ }_{101} 01$
1 Exporis to ec courtries	-1	-1	1731	1671	271	1321	-1	1341	1261	3×41	1421
\| expmots to third commatas	4491	-1	5601	3331	3:81	5061	-1	5981	2761	3051	411
! jotal exports	5491	- 1	7321	5001	6001	6381	-1	7321	4021	6491	5521
\|total uses	${ }^{10001}$	-1	10001	${ }^{10001}$	${ }^{10001}$	${ }^{1000}$	-1	${ }^{10001}$	${ }^{10001}$	1000	10001
\|total resources/usts		I		1	1	1	I	1	1	1	1
- mro ecu	47.11	-1	2.41	9.21	321	3.7	-1	5.31	6.51	al	35.11
- mro prs	52.21	-1	2.21	0.81	4.51	3.71	-1	8.01	6.41		16.71

Stry, mathexis iransp. os auxilitart trahisport											
	UR-81	1	0k 1	0 '	Sr		1	1			4
ressources	\cdots	1		1	1	,	-	I		I	\cdots
,		I	1	,	1	I	I	1	1	1	
,		-		1	-	1	-	1	1	1	I
	3101 5721	-1 -1	396 $318!$	4311 5301	2281 6071	2411 5691	-1 -1	8021	5261	${ }_{6281}^{271}$	5131
		I	1	+			I	I	I	!	I
ippuouction effective	8831	-1	714	9614	0341	8131	-1	8791	7001	9021	817
\|				1	3	64	-1	18	1	34.	581
1 infortaritis CE	-181	-1	${ }_{2029}{ }^{\text {R.4, }}$	201	38)	641 1031	-1	1051	291	S41	1281
	1101	$-$	2061	391	1661	1671	-1	1221	3001	851	1031
		-1					-				
lijial ressoures	10001	-1	10001	1000!	10001	10001	-1	10001	10001	${ }^{10001}$	${ }^{10001}$
1		!		i	I	i	,	,	,	1	
				1		i					,
emplots	1	I	1	1	I	I	।	I	1		I
1 (1	1	I	1	1		,	1		1	
forat sorims inispmeoua	,	I	+	1	1	834	-1	814	6311	2.1	8421
trotal sorties intermeokires		,		I			,			1	
1 l		I				I	1	!	!	'	,
coisormaliou des memages	721	-1	861	1051	1391	481	-1	1221	381	-1	,
	01 -1	\because	201	211	961	341	-1	${ }_{131} 1$	102!	911	49
Exportailions mit	891	- 1	601	371	1171	84	-1	501	2271	801	1029
Exportations totales	A31	-i		501		1181	-1	641	3281	${ }^{171}$	151
fictal emplois fimals		-1	10001	10001	10001	10001	-1	10001	10001	10001	1000
1		1	1		1	1	1			1	
fioral ressources/emplois)	I			'	,
- - Mrd ecu	40.11	-1 -1	1.41	${ }_{8}^{8.21}$	3.31	13.21 13	-1	5.31	2.81	. 51	9.51

1 1	fur-a	E	OK	0	Esp		6R	1	m	P	UK1
1 ressources			---1		----1		1	1	I	I	
1 atsoure				1			!	!	1		
I piat surbess muepreotaires	1921	-1	2811	991	961	2601	-1	2821	124	1351	2461
I valeur ajoutee - prix ou marche:	3831	-1	6971	©84 1	8991	7131	-1	6921	8591	8471	126
		1					!	1			
prpanuciron errective	$9 \mathrm{Pr\mid}$	- 1	10001	9951	9*, 1	988	-1	9791	10001	9811	9621
\| amrorialions ce	-1	-1	-1	11	11	${ }_{6} 1$	-1	8	-	71	81
1 imporiations it	131	-1	-1	71	41	61	-1	141	-1	111	301
Importaitions totales	${ }^{13}$	-1	-1	71	61	121	-1	211	-1	191	${ }^{381}$
		-1				'					
liotal rfssources	10001	-1	20001	10001	10001	10001	-1	10001	${ }^{1000}$	10001	${ }^{20001}$
	1	,	,	1			1				
1											
1 emplois	I	I	1	1		1	1		I	!	
! !	I	I		I	I	I	I	1	,	!	
fiotal sorties intemmedialres	6361	-1	641	5001	6411	6761	-1	6641	6311	697	6.41
,		1					1				
1 lat		,					1				
\| Cohsormation des menages	$1 \begin{aligned} & 3231 \\ & 241\end{aligned}$	-1	3591	411	347 -1	3131	-1	315	3281 11 1	294 -1	2371
I ORTATION brute de capichl fixe	1 1 -1	-1	-1 -1	-1 21	-1 51	-1 51 1	-1	$4{ }_{4}^{-1}$	121 21	4	0
$1-$ ExpORTAIIONS Pt	181	-1	-1	71	61	51	-1	161	291	41	351
I Exportaitors totalfs	171	-1	-1		119	111	-1		31	81	441
		1					,				1
gromat enflois finals	10001	-1	10001	10001	10001	10001	-1	10001	10001	10001	10001
fital ressources/emplois										!	
1 - MRD ECU	48.11	-1	. 61	14.11	2.51	10.01	-1	5.11	2.71	. 31	12.81
1 - MRD SPA	1 52.11	-1	. 81	13.51	3.61	10.01	-1	7.11	2.61	. 1	14.1

\dagger

[^0]: "for analytical purposes, producer prices are not very satisfactory, since the flows of a given product are not valued in a uniform manner, because they may or may not include VAT,

[^1]: Source: Primary Input tables.

[^2]: Source: Primary Input tables for Germany, Netherlands, Greece and Belgium.

[^3]: Source: See text above.

