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Partial equilibrium framework
The preceding chapter highlights the important attributes of an urban water model if it is to be useful in quantifying benefits and costs of policy change. 
The model presented in this paper is specifically formulated to examine the efficiency impacts of policies relating to pricing, demand management and investment. These issues can be examined using a partial equilibrium (PE) framework.
 Urban water demand and supply are particularly suited to a partial equilibrium modelling framework, for three principal reasons. 

· Water occupies a small share of household budgets (PC 2008). For this reason, the income effects from changes in the urban water market are likely to be small. 

· Water has few close substitutes. Therefore, the impact on, and interaction with other markets will be limited. This means that the water market can be considered in isolation from other markets.

· Urban water provision is characterised by a range of interacting policies, as well as several competing supply augmentation options. The detail that can be incorporated into a partial equilibrium framework means that it is well suited to evaluating multiple policies and investment options simultaneously, as well as their impacts on community welfare.

Presented in this paper is a model of a single urban region, ignoring to some extent the possibility of a larger water market. Large capital city markets are typically effectively separate markets because of the high costs of transporting potable water in pipes. As such, a single urban water system can be modelled in isolation from urban water systems in other regions.

The model is designed to estimate the economic impact of the issues outlined in the Commission’s (2008) discussion paper using a partial equilibrium approach. It presents the optimal pricing and investment decisions for a risk-neutral policy maker, operating in an environment of variability in (and uncertainty of) dam inflows. In each period, the decision maker faces two key choices: how much water to supply to end users or carry over for future consumption, and whether to invest in new sources of supply. The price consumers are willing to pay varies with the quantity of water supplied.

This chapter describes the urban water model used throughout the paper. Section 
2.1 briefly outlines the background of the theory underpinning the model, and the advantages of the approach. Section 
2.2 describes the extensions of that framework required for the Commission’s model, and outlines the model’s mathematical structure more fully. Finally, section 
2.3 describes our application of the model to an urban water setting, characterising the investment and pricing decisions that drive the model results. 
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Introduction to the PE framework 

The theoretical framework for the model is based on the spatial and temporal equilibrium framework developed by Takayama and Judge (1971), and first proposed by Samuelson (1952). Labys, Takayama and Uri (1989) further applied the framework for the economic analysis of markets over space and time. There is a wide body of literature applying this framework to various policy environments, from airport regulation, to energy and natural gas transportation, and including examples such as agricultural water and environmental problems (see, for example, Heady and Vocke 1992). This approach allows a market equilibrium to be found, as it incorporates various technologies associated with each supply option (through the use of activity-based linear programming). It allows for competing technologies to be evaluated simultaneously, without any assumptions about which technology will be used. Some technologies may not be used at all.
The market equilibrium is computed by maximising net social welfare in the urban water sector (the sum of Marshallian consumer and producer surplus). That is, it maximises the area under the demand function less the total costs of supply activities. However, the model only maximises welfare in the urban water market. For this reason, welfare in models of this type is often referred to as quasi welfare (Samuelson 1952). It measures only the costs and benefits that result from transactions and investments within the water market. It excludes welfare changes in other markets resulting from income effects (changes in purchasing ability in other markets resulting from price changes in the water market), as well as broader externalities. For the purposes of this report, and bearing these limitations in mind, the sum of the Marshallian consumer and producer surplus is reported as the welfare measure.
At the optimal solution, consumers cannot receive a greater benefit without a more than offsetting increase in the costs. This allows a great deal of flexibility: detailed demand characteristics, supply technologies, and additional constraints can be included to capture the impact of policy constraints on the operation of the market.

A simple, stylised exposition of the framework is presented in box 
2.1.

The framework readily incorporates markets temporally: water storages and supply facilities with long economic lives mean that demand and supply are linked temporally. This interaction between storages and investment over time gives value to water in storage (ERA 2005) — stored water has value because it can meet future water demands, reducing the need for investment. This dynamic interaction is of particular importance in urban water provision, and is readily incorporated into partial equilibrium models. 
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Stochastic extension: multistage stochastic programming and the probability tree 

Urban water supply decisions are complicated by the probabilistic nature of future rainfall. Investment choices are state dependent: past inflows, and the variability associated with future inflows, influence whether to invest in additional supplies, and what form these investments should take. Future rainfall also has important implications for comparison of different augmentation options: relatively expensive rainfall independent sources (such as desalination and recycling) need to be weighed against cheaper rainfall dependent sources (such as rural–urban trade). Alternatively, there is the option to forgo investment altogether if there is sufficient water in storage. 

The Commission’s model incorporates probabilistic rainfall by embedding the partial equilibrium model within a multistage stochastic programming framework. Two-stage and multistage stochastic programming are well documented approaches to modelling decision making over time with probabilistic expectations of future outcomes (for summaries, see Kall and Wallace 1994 and Birge and Loveaux 1997). Both allow for some decisions to be made subject to rainfall variability while other recourse decisions (quantity of water supplied) can be made after observing rainfall outcomes. Multistage stochastic programming is differentiated from two‑stage stochastic programming by allowing for sequences of investment decisions to be made over time as outcomes are observed (Birge and Loveaux 1997). 
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Stylised exposition of the framework

	Maximisation of the area under the demand function minus the area under the supply function is a way of solving for the point at which demand intersects supply.a
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To find the maximum, take the derivative of the net social welfare function with respect to Q, and set it equal to zero:
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This solves for the value of Q where the demand function intersects the supply function. The value of P is implied from the solution value of Q.

	a The supply function shown is linear for illustrative purposes. Total supply is represented within the model as the aggregation of the various supply sources, each with their own separate cost profiles. For more detail on the costs of individual investments, see Appendix B. For detail on the full model structure, see Appendix A.

	

	


This allows for ‘wait and see’ decision making: investment decisions can be delayed until storage levels fall below some threshold. All of the investment decisions in the planning period do not need to be made in year one. Rather, investment decisions are made over time as the sequence of inflows, and hence water scarcity, is revealed. This allows decisions to be the best possible given information available at the time, and closely parallels the decision-making constraints faced by real-world policy makers and markets.
Multistage stochastic models are typically solved by approximating the probability distribution of the random variable (inflows) using a discrete probability distribution (Kall and Wallace 1994). The model approximates inflow and rainfall data using three discrete states, each with a corresponding probability: a low, medium and high rainfall scenario for each time period. These discrete inflow states, combined with the inter-temporal decision making, imply an underlying probability tree structure for the model (Figure 
2.1).

Figure 2.
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Illustrative probability tree structure with two inflow statesa
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a(Two inflow states only are shown here for simplicity. The model described in this paper has three inflow states: high, medium and low.

Figure 
2.1 shows an illustrative probability tree, containing two inflow states. In the first year, there are only two possible inflow scenarios: high and low. With each additional year, the number of possible cumulative states increases (for example, in the second year, there are high–high, high–low, low–high and low–low combinations). Each of these points in the tree with a cumulative combination of inflow states is called a node. The number of nodes in the probability tree increases with both the number of inflow states and the number of years in the model.
Nodes in the probability tree represent supply, demand, investment and storage decisions at a point in time for a unique scenario of inflows. Each node represents a particular water market at a point in time for a given scenario of inflows to that point in time, and expectations about future inflows over the remainder of the time horizon. In practice, each node is a unique combination of rainfall states over time. Each node contains a snap shot of the levels of all variables relevant to that time period and rainfall state: levels of inflows, demand, supply, and prices. Levels of storage, and investment decisions are passed from one node in the probability tree to the next, with probabilistic knowledge of rainfall states in future nodes.

The model maximises the expected value of discounted net social welfare over time for all possible rainfall states across the entire probability tree (for the full specification of the model, see appendix A). This is analogous to an expected utility function, as set out in von Neumann and Morgenstern (1944). Investment and storage decisions are made based on the expected future welfare they provide. 

Investment and storage decisions are made based on their expected future returns throughout the probability tree. In the core market model, an investment will only be built if [the present value of] the expected benefits derived from that investment at least offsets the expected costs. This means that ex ante, any investment that is built will always have a benefit–cost ratio of at least 1. However, after rainfall states are revealed, an investment may, ex post, have a benefit–cost ratio of less than 1. This is because the initial investment decision must be made with only probabilistic knowledge of future rainfall states. Once those rainfall states are realised, the policy maker or investor must live with the earlier investment decision. A priori, this implies that any given decision is unlikely to be optimal for a specific inflow scenario, compared with the situation where the future was known with certainty (Kall and Wallace 1994). For example, an investment in desalination may be made early due to rainfall risk if, on an expected value basis, ex ante the benefit from building the plant outweighs the costs. However, ex post it may be loss-making if inflows to dams turn out to be higher than expected and the value of water from the plant is low. Conversely, if it turned out to be very dry the plant would provide much-needed water, the benefit of which would far outweigh the costs of the plant. More detail on the economic principles behind investment decision making in the model is outlined in appendix C.
Solving the multistage stochastic program

Due to the nature of the probability tree, the model becomes very large, very quickly. For instance, a three inflow state model, with 20 time periods, would have 320 scenarios, resulting in over 200 billion variables and over 100 billion equations, and could not be solved using available computing technology. 
The authors worked with academics from Melbourne University (Melbourne Operations Research) to consider methods making solving the model tractable. They investigated several approaches — including nested Benders decomposition with sampling (Infanger 1993), as well as approaches based on stochastic dynamic programming (Ross 1983 and Powell 2007). However, they found that there were no well documented approaches in the literature that suited our model. Any approach would have required substantial investigation, and extensive additional work. The authors also examined another method to reduce the solution times for the model, which involved solving a quadratic programming formulation of our model (McCaulay 1985). This method, however, was proved impractical for the model outlined in this paper.

Considering these limitations, it was determined that the largest model solvable with the desired level of system detail was a 10 time-period model. More specifically, this translates to a model with approximately 2.5 million equations and 5 million variables. Three techniques were used to engineer a model of the desired size: aggregating several years into a single time period for the later years of the simulation, treating investment as a cumulative total, and linearisation. 

As mentioned above, given current computing technology, a year-by-year simulation spanning a 20-year time horizon could not be modelled in full. In order to examine investment decisions over such a timeframe, while staying within practical computational limits, aggregate time periods were used for later years in the simulated time horizon. The rationale for this approach is that in early years, accurate price and investment information is required. However, further into the future, outcomes are increasingly uncertain, and precise year-by-year results are less important than the general pattern of prices and investment. In order to model a 20‑year time horizon using this approach, the first four time periods were represented as 1-year steps, the next three periods as 2-year steps, the next two periods as 3-year steps, and the final period as a 4-year step
. This substantially reduces the number of equations and variables in the final model, as it is in the later time periods that the probability tree is broadest. This approach was used for longer-run simulations (to analyse investment), while short-run simulations had eight single-year steps (for policy analysis).
In order to make the model solve more easily, investment within the model was treated as a cumulative total, rather than incremental additions in each year. This can be seen in box 
2.2, and appendix A. Modelling investment as a cumulative total makes the model solution computationally less onerous. If investment is treated incrementally in the model (i.e. the capacity added in each year) then many equations require summations that include previous incremental additions to capacity (to determine, for example, if desalination plant capacity was added several years earlier, and therefore available for use today). This means that the matrix which must be solved computationally has many more elements. This makes the matrix less ‘sparse’: there are more values in the matrix that must be solved. This ‘sparseness’ affects how computationally intensive the model solution is, and, in turn, how long it takes to solve (Hillier and Lieberman, 2000).
Further, linearisation is employed to allow a larger model to be solved. Models using the spatial equilibrium framework can be solved efficiently when in a linear form (Duloy and Norton 1975), and modern linear solver algorithms are much more efficient than non-linear alternatives. The model described in this paper is linearised: non-linearities are approximated using a piecewise linear function. This allows a much larger model to be solved than would be otherwise possible. This implies that any results for the model are an approximation of the true, non-linear solution.
The use of linear programming in a multistage stochastic framework differs from the stochastic dynamic programming approach pursued by Hughes et al. (2008), Grafton (2008) and others to analyse urban water issues. Both approaches have advantages and disadvantages that stem from the way each framework defines its state space — the discrete combinations of states of the world that govern the number of scenarios in the model. Multistage stochastic models define their state space in terms of time. This allows them to include many more investment options (which can be considered simultaneously) while also including continuous inter‑temporal dam storage variables. Stochastic dynamic programming, on the other hand, defines its state space in terms of investment options. This allows the models to include more temporal detail (e.g. longer time periods and, seasonality), and maintain a much smaller probability tree. However, all state variables must be discrete (Nandalal and Bogardi 2007), which means that storages cannot be modelled as a continuous variable.
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The treatment of investment in the model and solution times

	The water model includes a capacity variable for every investment option. This capacity variable appears in two places: linked to investment costs in the objective function and linked to supply in a capacity constraint. 

A plant can be built at any point in the simulation period, and can be expanded (up to the maximum capacity) at any point thereafter. At each point in time, a cost of investment is incurred proportional to the level of investment made in that period (the incremental level of investment). Further, each investment can provide water equal to the total invested capacity up to that point in time (the cumulative level of investment).
It is logical to use the incremental level of investment in all equations. A disadvantage of this formulation is that there are a large number of coefficients in the capacity constraints, which requires significant computing time to generate the model (i.e. for the computer to construct the matrix representing the model for solution). Further, the additional data in the matrix to be solved makes the computational solution process much slower.

The cumulative investment capacity has fewer coefficients. The supply constraint includes only the cumulative variable itself, and the objective function can multiply the investment costs by the change in the cumulative capacity. This also makes the model compilation process faster.

This reduction in coefficients makes the matrix that must be solved more “sparse”. Sparse matrixes can be solved much more quickly than dense ones (Hillier and Lieberman 2000).

This can be seen illustratively below with some basic equations. In a simple, three-year model, the incremental investment supply constraint would take the form:
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However, for a cumulative specification of investment, there are much fewer instances of each variable in all the constraints:
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This change also has implications for the specification of investment costs in the objective function, which can be seen by comparing investment in the objective function in appendix A with the objective function in appendix C. The two objective functions give identical solution values. The change to the objective function has no bearing on solution times.
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Our application 
The model describes the behaviour of demand and supply in a hypothetical urban water market (figure 
2.2). As discussed in the previous section, the market operates for a time horizon of up to 20 years. Each time period has three possible rainfall states, based on available data (data used for calibration is described in appendix B). The model includes three types of demand, and five augmentation options that are competing with existing dams to supply water. There are several items that have not been included in the model, for varying reasons. These are outlined in box 
2.3.
Figure 2.
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Model of the urban water system

	
[image: image7.emf]Urban catchments

Final demands

Households

Outdoor

(restrictions apply)

Commercial

Augmentation 2: 

New dam

Augmentation 1:

Desalination

Augmentation 3:

Aquifers

Augmentation 5:

Household tanks

Augmentation 4:

Rural-urban

trade

Inflows

Inflows

Water

reticulation

costs

Inflows




Do not delete this return as it gives space between the box and what precedes it.
	Box 2.

 SEQ Box \* ARABIC 3
Additional factors not in the model

	Other sources of risk

Different rainfall states are the only source of risk modelled. Other sources of variability — for example, levels of long-term demand growth — are not included in the stochastic programming approach. Variability in other sources of supply (tanks, new dams and rural–urban trade) is assumed to be perfectly correlated with inflows to dams. This is done for computational expediency, avoiding the need for having two or more exploding probability trees.

Correlation between rainfalls
Historically, persistent drought has caused water shortages in many Australian cities. Conversely, there have been periods when catchments have flooded. This suggests that there may be serial correlation between rainfall levels over time: if it is dry today, it is increasingly likely to be dry tomorrow. This can be readily incorporated into the modelling. However, the authors could not find evidence for such correlation in the historical data used (see appendix B), and therefore did not include it in the model results presented in this paper. Future research could potentially shed further light on this issue.
Weather dependent demand
Demands for water may be a function of the weather and rainfall. This is particularly true of outdoor demands: for example, if there are particularly low rainfalls, people are likely to want to water their gardens more. This can be incorporated into the framework described in this paper. However, there are few reliable estimates of the elasticity of outdoor water demand with respect to rainfall. For this reason, the modelling assumes that demands are weather independent.
Storage costs

The model assumes that the marginal cost of dam storage is zero. However, in practice this is unlikely to be the case. In any event, the model includes the annual costs of dam maintenance, and marginal storage costs would likely be small relative to this. The inclusion of marginal dam storage costs would likely have a minimal impact on any modelling results (Tooth 2009).

	

	


There are four characteristics of the Commission’s model that require further explanation, and that have an important impact on the results:

1. specification of demand

2. supply options included

3. cost characteristics of supply

4. terminal conditions.

Demand

One of the important factors in examining water policies is the relationship between the level of consumption and prices. The model includes three types of demand, all of which are aggregate demands for the urban region. The first is outdoor demand, which is affected by water restrictions. The second is indoor household demand, which — based on previous studies — is assumed to be relatively inelastic (unresponsive) with respect to changes in the price of water. The final demand type is commercial use that is not affected by restrictions and which is relatively more price elastic than indoor household demand for a given price. Each of these demand schedules has a different responsiveness to price, and all are based on a linear demand curve. All three types of demand grow over time, and consumers are risk averse (box 
2.4).
Supply options

The supply side of urban water provision in Australia is characterised by numerous competing investment options, as well as the existing dam infrastructure. Existing dams receive an annual inflow of water that varies with the level of rainfall. Residual inflows (after the removal of environmental flows and system losses) can be used for two purposes: meeting demand in the present period, or contributing to storage for future periods. The dams have a maximum storage capacity limiting the amount of water that can be held between any two periods. Any excess storages are lost as spillage. The model represents all catchments in a region using a representative aggregate dam storage. A single aggregate storage model can be used as a satisfactory approximation of a multiple storage system (Perera and Codner 1988), and this approach has been adopted in other economic modelling exercises (for example, Hughes et al. 2008). 
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Risk aversion in the model

	Risk aversion implies a preference for a lower but certain level of consumption over a risky level of consumption. The figure below shows the welfare of a risk-averse consumer for various levels of consumption. If a consumer has an equal chance of a low (Q1) or high (Q3) level of consumption, the welfare of the consumer will be the expected value of welfare resulting from the two possibilities, W1. The consumer would receive greater level of welfare (W2) from a guaranteed mid-range level of consumption (Q2). Therefore, a risk-averse consumer would be willing to pay a premium for certainty.
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 The welfare function in the model described in this paper has the same ‘concave’ shape as the graph in the figure above. Since the demand curve has a negative slope (appendix B) and the welfare function is defined as the area under the demand curve less supply costs (which increase at least proportionately with the quantity of water supplied — section 2.1), the welfare function is increasing at a decreasing rate. 

The model optimises expected net social welfare in the presence of inflow risk, analogous to an expect utility function (von Neumann and Morgenstern 1944). Consumers make decisions based on expected future levels of consumption, as well as presently available levels of water in storage. A stochastic model can be used to incorporate risk preference into decision making (Hardaker, Huirne and Anderson 1997). The combination of the concave welfare function and a stochastic model can therefore be interpreted as representing partial risk aversion in the consumption of water. As a consequence, there are benefits from ‘smoothing’ water consumption over time using dam storage — consistent with theoretical work showing benefits from price stabilisation (Massell 1969).

	

	

	


Five potential new supply sources (dams, desalination plants, aquifers, rural–urban interconnection and household tanks
) are available, each of which have unique physical characteristics that differentiate them within the model. For example, tanks provide households with a small amount of additional, rainfall dependent water. This water can be used for outdoor uses, permitting households to compensate for water restrictions (up to the amount of water they are able to draw from their tanks). Greater detail about each of the supply sources included in the model is provided in appendix B.
Supply costs

Augmentations of capacity to supply water have three costs: a construction cost; an ongoing, annual fixed maintenance cost; and a marginal cost associated with releasing, delivering or obtaining a unit of water from the supply source. There is also a reticulation cost associated with transporting water from bulk storage to end users, which is uniform across all supply sources. A time lag exists between the decision to invest and commissioning of the facility, which varies between water supply technologies. This time lag influences the optimal investment choice, as some investments can be made more rapidly with higher cost per unit of water delivered (for example, household tanks) while others are slower, but have a lower cost (for example, a rural–urban pipeline). All of these augmentation options are considered together: the model maximises net social welfare by choosing the optimal combination of investments that best meet the willingness of users to pay for water, subject to the costs associated with the investments. 

Binary variables introduce significant barriers in terms of the solvable size of the model. However, some investments are best represented with a binary variable. In the model, rural–urban interconnection is represented as a binary variable due to the nature of pipe interconnection investment. Similarly, new dam investments are treated as binary variables. However, the other investment options are continuous (desalination, household tanks, and aquifers). This is because of the significant computational load required for binary variables. The continuous variables are given an upper-bound cap on the total investment possible. However, this representation is not entirely unreasonable for those investments: many augmentation options are highly modular, with opportunities to invest or expand capacity to varying degrees. For example, desalination plants use modular technology, while household tanks are already an aggregation of many smaller units.
Terminal conditions

In finite period models, an issue arises when a productive asset has a life that extends beyond the time horizon of the model. This is of particular importance for investments made late in the modelling period. While the cost of investment is incurred up front, some benefit likely falls outside the chosen time horizon. In order to ensure investment decisions are not biased by this matter, all investment costs are truncated to reflect the life (and value) of the asset beyond the terminal period of the model. Ideally, the full cost and benefit of all investments would be contained in the simulation period, and since they are not, any formula truncating investment costs must make assumptions about the allocation of the investment costs between the periods within the planning horizon of the model and those beyond the planning horizon. In the model, this truncation is done pro rata: the share of the asset’s life that is outside of the simulation period is subtracted from the total investment cost. This presupposes that the cost of an investment is evenly distributed over time. An alternative would be to assume that the cost diminishes with time to reflect the compounding nature of the depreciation schedule. The approach contained in the model creates a bias in favour of long-lived assets, while the latter approach would favour short-lived assets.
 
Storages in the final period of the model are made endogenous using a terminal condition. This condition attaches value to water in storage in the final period, by imputing a value of future benefits obtained from the final stock of water
 (McCarl and Spreen 2008). This represents the expected value of the future stream of benefits that would be obtained from the water in storage outside of the simulation period. Without a terminal condition of some kind, dams would empty in the final period, as there is no representation of future value of water in storage. Alternative approaches to the terminal condition could have been used: setting an arbitrary minimum value, or attaching a penalty to depleting storages. The value imputed in the terminal condition is derived from the implicit value attributed to storage based on storage behaviour within the modelled period.
�	That is, by examining the changes brought about in the urban water market without considering the impact on other markets within the economy.

�	The method reduces the number of variables in the model, but increases the number of constraints. For a model the size of the urban water model in this paper, this is undesirable. The execution time for a model is approximately related to the cube of the number of equations, while it is relatively unaffected by the number of variables (Hillier and Lieberman 2000). As such, increasing the number of constraints would materially increase solution times.

�	Although aggregation is convenient for many variables, it required assumptions to be made about discounting. For the aggregated 20-year model, discount rates were compounded and applied at the end of each aggregated period. This results in a slight overstatement of the impact of discounting.

�	Recycled water has not been included. This is because the properties of recycled water are similar to desalination (weather independent potable water). However, the material barriers to the adoption of such technologies are largely political, or alternatively that the water produced is not perceived to be the ‘same’ (e.g. quality) as other types of water. This was not included in the model due to the additional data and computational difficulties it introduces.

�	As a practical matter, the two approaches give very similar results. For a typical simulation, net social welfare is changed by less than 0.5 per cent, and levels of investment changed by less than 2 per cent.

�	This approach is referred to as a vertical-terminal-line problem (Chiang 2000): the model has a fixed terminal time (the end of the simulation timeframe) at which the final storage must be determined. An alternative specification would have been as a horizontal-terminal-line problem, which would have specified the ‘stop’ level of storages, as opposed to the ‘stop’ time.
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